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Belén Agudo Castillo1, Miguel Mascarenhas2, Miguel Martins2, Francisco Mendes2,

Daniel de la Iglesia1, Antonio Miguel Martins Pinto da Costa1, Carlos Esteban

Fernández-Zarza1, Mariano González-Haba Ruiz1

1Department of Gastroenterology. Hospital Universitario Puerta de Hierro

Majadahonda, Spain
2Gastroenterology. Centro Hospitalar Universitário de São João, Porto, Portugal.

ABSTRACT

The development and implementation of artificial intelligence (AI), particularly deep

learning (DL) models, has generated significant interest across various fields of

gastroenterology. While research in luminal endoscopy has seen rapid translation to

clinical practice with approved AI devices, its potential extends far beyond, offering

promising benefits for biliopancreatic endoscopy like optical characterization of

strictures during cholangioscopy or detection and classification of pancreatic lesions

during diagnostic endoscopic ultrasound (EUS). This narrative review provides an up-

to-date of the latest literature and available studies in this field. Serving as a

comprehensive guide to the current landscape of AI in biliopancreatic endoscopy,

emphasizing technological advancements, main applications, ethical considerations,

and future directions for research and clinical implementation.

Keywords: Artificial intelligence. Endoscopic ultrasound. ERCP. Biliopancreatic

endoscopy.

INTRODUCTION

Artificial intelligence (AI) involves the use of computers and algorithms to simulate

human-like decision-making and problem-solving processes 1. It is widely considered a



revolutionary tool with the potential to transform medicine 2. Imaging-based

specialties have emerged as leaders in AI model development 3. Gastroenterology, in

particular, stands to benefit significantly from AI advancements, potentially leading to

disruptive changes in clinical practice. Deep learning (DL), specifically convolutional

neural networks (CNNs), are architectures inspired by the human visual cortex,

excelling at image analysis 4. Due to reduced pre-processing requirements and less

reliance on prior knowledge, CNNs often outperform other DL models in lesion

detection and differentiation 5. Increased computational power and the development

of sophisticated CNNs have driven an exponential growth in AI-related research within

Gastroenterology, as is shown on recent reviews, highlighting the evolving applicability

of AI in gastrointestinal endoscopy alongside relevant regulatory and ethical

considerations for its general implementation in clinical practice6.

Upper endoscopy was one of the first areas to test the development of AI models 7. In

a recent metanalysis, AI had comparable diagnostic accuracy to expert endoscopists in

diagnosing Barrett esophagus and revealed a non-significant increase in the diagnostic

accuracy of esophageal squamous cell carcinoma 8. The role of AI in the diagnostic of

early gastric cancer was also studied, with non-significant increase in diagnostic

accuracy 9.

AI-aided colonoscopy is an important study field, with focus in diagnosis of dysplastic

adenomatous lesions. A recent systematic review and metanalysis showed that AI-

aided colonoscopy had a significative increase in adenoma detection rate (ADR) and

adenomas detected per colonoscopy 10. Interestingly, AI-aided colonoscopy was found

to be more useful for endoscopists with lower ADR and shorter inspection time, while

in experts it revealed a similar ADR. An important consideration is whether the

increased ADR is accompanied by a detection of advanced adenomas, as the majority

of the increased detection rate in individual studies was associated to an increase in

detection of small adenomas and hyperplastic polyps 11,12. Indeed, recent research

focuses on the potential impact of AI on ADR within colorectal cancer screening

programs, where it could play a significant role 13.

In capsule endoscopy (CE), the development of DL models holds disruptive potential,

addressing its inherent challenges. The process is not only time-consuming, but it also



susceptible to fatigue and errors (missed frames may lead to missed lesions)14. There

are published complex CNN that can automatically detect multiple clinically relevant

lesions with high diagnostic yield, and some are even capable of predicting their

bleeding potential 15–18. The scientific progress in this field has advanced from

detecting lesions in the small bowel to encompassing both the small bowel and colon,

while the ultimately goal is to extend this assessment to a comprehensive endoscopic

approach 19. While further prospective and multicentric studies are necessary, AI-

enhanced CE may have a transformative impact in medical practice. This could

improve its cost-effectiveness, broaden the current CE indications (e.g. CE after

negative upper endoscopy, in patients presenting with upper bleeding) and even

change the current paradigm to include endoscopic oncological screening for GI

cancers 20.

Beyond significantly reducing procedure interpretation time, the use of AI algorithms

can play a crucial role in other gastroenterology procedures that involve a steep

learning curve and suboptimal diagnostic accuracy with high inter-observer variability.

This applies to specialized areas within gastroenterology, such as evaluating biliary

stenosis in cholangioscopy, detecting/differentiating dysplastic precursor lesions in

anoscopy and assessing EUS pancreatic lesions 21–24. In these cases, the use of DL in

real-life clinical setting would not only help the physician in the decision process, but

also indicate the most likely location of the lesion, guiding the biopsy/treatment

process. Although the current treatment paradigm of these lesions still demands

histopathological assessment and confirmation, the prospective validation of these

technological tools could lead to remarkable changes, perhaps even considering the

omission of biopsies. This gains significance, particularly as multimodal AI technologies

progress, encompassing both image data and other personal health records, assuming

that computational processing power will keep pace with this technological

advancement. This review offers a state-of-the-art examination of current research

and advancements in AI-assisted biliopancreatic endoscopy.

Initial studies exploring its use in ERCP, EUS and cholangioscopy have shown promising

results in identifying key anatomical landmarks during these procedures, as well as

differentiating pathologies such as pancreatic cancer, autoimmune pancreatitis,



pancreatic cystic lesions, and biliary strictures.

ARTIFICIAL INTELLIGENCE ASSISTED EUS

EUS is a valuable diagnostic tool used in a variety of clinical applications, including

differentiating benign and malignant pancreaticobiliary disorders, staging

gastrointestinal (GI) tract tumors, evaluating subepithelial lesions (SELs), and obtaining

diagnostic tissue samples 25. Compared to other endoscopic imaging modalities, fewer

studies have investigated the use of AI for EUS image analysis. This can be attributed to

several key challenges. Firstly, obtaining EUS images of targets with confirmed

histological diagnoses presents greater difficulty than in luminal endoscopic

techniques, where biopsies are more readily acquired. Secondly, the lower prevalence

of pancreatic diseases compared to upper GI or colonic lesions results in a smaller pool

of available data for AI model development. Finally, EUS images possess inherently

lower resolution and are susceptible to quality degradation from external factors such

as movement artifacts by patient´s breathing and heartbeats that require real-time

corrections and registrations by the AI models to compensate for image jitter and

shifting.

The application of AI to enhance the differential diagnosis of pancreatic lesions using

EUS images represents a pivotal frontier in current research. Despite its established

role in pancreatic lesion diagnosis, EUS faces challenges, including low specificity and

operator dependence. AI-assisted EUS has the potential to address these limitations,

with studies demonstrating improved diagnostic accuracy and reduced interobserver

variability. Multiple studies utilizing support vector machines (SVM), principal

component analysis, and neural networks have shown that AI algorithms achieve

significantly higher sensitivity and specificity than traditional EUS 26–28.

Pancreatic cancer

Pancreatic cancer (PC) has a poor global five-year survival rate (12%) and early

diagnosis is crucial, as it can significantly improve survival rates 29. While traditional

imaging techniques have limitations, EUS offers superior sensitivity for detecting small

pancreatic lesions 30,31. Recognizing this advantage, researchers are actively exploring



the application of AIin conjunction with EUS (EUS-AI) for PC detection 32–34.

In a recent meta-analysis DL models demonstrated superior performance compared to

conventional EUS diagnosis in PC detection, with a 95% sensitivity and 90% specificity,

suggesting a strong potential to improve early detection of the disease 33,35. Of

particular concern is the accurate differentiation between PC and benign conditions

like chronic pancreatitis (CP) and autoimmune pancreatitis (AIP)36. Tonozuka et al.

developed a DL-based computer-assisted diagnosis system to detect PC. Using control

images from patients with CP or normal pancreas, their system achieved exceptional

performance with area under the curve (AUC) of 0.92 and 0.94 (validation and testing,

respectively) 26. Similarly, Zhu et al. employed an SVM predictive model built from EUS

image parameters to differentiate between PC and CP Their model demonstrated an

average accuracy of 94.2%, with sensitivity and specificity of 96.3% and 93.4%,

respectively. While promising, these studies highlight the need for external validation

to confirm generalizability37. Marya et al. successfully employed an EUS-CNN model

capable of differentiating AIP from other pancreatic conditions with promising results.

Their model demonstrated a sensitivity of 90% and specificity of 78% when

distinguishing AIP from all other conditions. Specificity increased to 87% when

considering only AIP versus PC 38. These findings are significant, especially in light of a

recent meta-analysis highlighting the limitations of EUS-tissue acquisition in accurately

diagnosing AIP39.

Pancreatic cystic lesions

AI holds promise for the endosonographic diagnosis and characterization of pancreatic

cystic lesions (PCLs), an area where traditional EUS faces challenges with low

interobserver agreement, especially in distinguishing neoplastic from non-neoplastic

PCLs with an accuracy ranging from 48-94% 40. Several studies have investigated the

application of AI, particularly CNNs, to classify PCLs. Nguon and colleagues highlighted

the potential of AI in distinguishing between mucinous and serous cystic neoplasms,

achieving an accuracy of approximately 83%, comparable to visual assessment by

endoscopists. While this result is promising, the study's focus was limited to two

specific types of cystic lesions 41. One notable retrospective study using a dataset of



5505 EUS images demonstrated that a high-precision CNN algorithm could distinguish

mucinous from non-mucinous cysts with remarkable accuracy (98.5%), sensitivity

(98.3%) and specificity (98.9%), and an AUC of 1 42. AI has also shown potential in

predicting malignancy, such as in patients with pathologically confirmed intraductal

papillary mucinous neoplasms (IPMNs). Here, the AI model achieved an impressive

AUC of 0.91 for diagnosing malignant IPMNs, surpassing the diagnostic accuracy of

human experts using pre-operative EUS43. Machicado et al. explored the potential of AI

in combination with EUS-guided needle-based confocal laser endomicroscopy (EUS-

nCLE) for advanced IPMN diagnosis and risk stratification. Compared to established

guidelines, their AI-assisted approach demonstrated higher sensitivity and accuracy

with comparable specificity 44. These findings suggest that AI-assisted EUS holds

significant potential to revolutionize PCL risk stratification, aiding clinical decision-

making and guiding follow-up strategies.

Within the field of AI-Assisted EUS, studies have explored the integration of AI with

various techniques, including elastography, contrast-enhanced harmonic EUS (CH-

EUS), and the assessment of cytology and histology samples obtained via fine needle

aspiration (FNA) or biopsy (FNB) 45–48.

An early prospective trial investigated using EUS elastography images, converted to

vector data, and analysed with simple neural networks. Despite a small sample size

(necessitating 10-fold cross-validation), this achieved an AUC of 0.93 in classifying

malignant tumors 49. In 2012 a larger, multi-centre blinded study (258 patients)

validated the approach, outperforming hue histogram analysis 45.

Systems like CH-EUS MASTER use deep CNNs and Random Forest algorithms for real-

time pancreatic mass diagnosis and biopsy guidance. It provides real-time mass

identification/tracking, differentiates PC from CP using perfusion analysis, and by

utilizing real-time feedback provided by the endoscopists throughout the procedure,

the system aids in the selection of the most suitable type and size of puncture needle,

offers guidance on the optimal location and evaluates the quality of the obtained

sample. Consequently, this integration of AI technology has the potential to decrease

the number of punctures necessary to acquire an adequate sample, enhance puncture

precision, and mitigate the likelihood of complications 50. Udristoiu et al. advanced



machine learning in this field by integrating a more complex approach, enabling the

model to consider temporal data from contrast-enhanced imaging alongside other

image types. Five image sets were extracted per EUS exam (grayscale, color Doppler,

CH, elastography) and the results achieved a 96.4% specificity and 98.6% sensitivity

overall51.

Advancements in rapid on-site evaluation (ROSE) aim to improve diagnostic yield and

accuracy. Lin et al. developed an AI-ROSE model as a potential substitute for manual

ROSE during EUS-FNA. While the model demonstrates promise, its current sensitivity

(under 80%) indicates a need for refinement 52. An ideal AI-ROSE system should not

only identify malignancy but also accurately assess sample adequacy. To maximize

practicality, potential solutions include smartphone-based algorithms for rapid analysis

or telepathology options for remote cytopathologist expertise.

Table 1. Summary of studies on DL Assisted - Endoscopic Ultrasonography in

Pancreatic Disease.

Field Study Patient

Population

(n)

Objective AI model Outcomes

Pancreatic

Cancer

Saftoiu et

al, 201245

PC (211); CP

(47)

Differentiate

cancer from

benign

masses

Multi-layered

perceptron

Sensitivity

= 87.59%

Specificity

= 82.94%

AUC =

0.94

Pancreatic

Cancer

Udristou

et al,

202151

PC (30); CP

(20); pNET

(15)

Diagnose

focal

pancreatic

mass

Convolutional

neural

network and

long short-

term memory

Sensitivity

= 98.6%,

Specificity

= 97.4%

AUC =

0.98



Pancreatic

Cancer

Tonozuka

et al,

202126

PC (76); CP

(34); Control

(29)

Differentiate

pancreatic

cancer from

chronic

pancreatitis

and normal

pancreas

Convolutional

neural

network and

pseudo-

colored

heatmap

Sensitivity

= 92.4%

Specificity

= 84.1%

AUC =

0.94

Pancreatic

Cancer

Kuwahara

et al,

202336

PC (524)

Non-Cancer

Patients (170)

Differentiate

pancreatic

cancer from

non -cancer

pancreatic

lesions 

Deep

convolutional

generative

adversarial

network

Sensitivity

= 94%

Specificity

= 82%

AUC =

0.90

Pancreatic

cystic

lesions

Kurita et

al, 201953

Mucinous

cystic

neoplasms

(23); Serous

Cystic

Neoplasms

(15); IPMN

(30); Other

cyst types

(17)

Differentiate

benign from

malignant

cyst

Multi-layered

perceptron

Sensitivity

= 95%,

Specificity

= 91.9%

AUC =

0.96

Pancreatic

cystic

lesions

Kuwahara

et al,

201943

Benign IPMN

(27);

Malignant

IPMN (23)

Predict

malignancy of

IPMN

Convolutional

neural

network

Sensitivity

= 95.7%,

Specificity

= 92.6%

AUC =

0.98

Pancreatic

cystic

Vilas-

Boas et

Mucinous PCL

(17); Non-

Differentiate

mucinous and

Convolutional

neural

Sensitivity

= 98.3%,



lesions al, 202242 mucinous PCL

(11)

non-

mucinous

PCLs.

network Specificity

= 98.9%

AUC = 1





Pancreatic

cystic

lesions

Vilas-

Boas et

al, 202242

Convolutional

neural

network

PC: Pancreatic cancer; CP: Chronic pancreatitis; pNET: Pancreatic neuroendocrine

tumor; IPMN: Intraductal papillary mucinous neoplasm, PCLs : Pancreatic cystic

lesion.

Other scenarios

Initial applications of AI in EUS focused on pancreatic disorders, but recent studies

explore its potential for gastrointestinal SELs diagnosis, particularly gastrointestinal

stromal tumors (GISTs). A recent meta-analysis of seven studies (2431 patients)

demonstrated that the EUS-AI model employing CNNs achieved superior sensitivity

(0.92) and specificity (0.82) in detecting GISTs compared to conventional endoscopy.

Additionally, the model exhibited potential in assessing the malignant risk of GISTs 54.

AI presents practical solutions for optimizing EUS training. A major challenge for novice

endoscopists is accurately identifying anatomical structures. Deep-learning systems

like BP MASTER tackle this challenge with station classification, segmentation, and

real-time EUS guidance. These tools substantially improve trainee accuracy in

recognizing stations and interpreting images, potentially shortening the learning curve
55,56.

ARTIFICIAL INTELLIGENCE IN ERCP

One of the most challenging diagnoses in GI diseases are biliary strictures (BS). BS are

defined as indetermined when cross-sectional imaging, as well as tissue sampling, are

inconclusive or negative 57, and this represents a challenging clinical scenario. Almost

20% of BSs are of indeterminate etiology at their presentation 58.

Conventional sampling techniques, such as ERCP-guided brush cytology or forceps

biopsies are limited by a low sensitivity (45% and 48.1%, respectively) and the

combination of the two techniques can barely increase the sensitivity (59.4%)59. EUS-

guided tissue acquisition can significantly improve the diagnosis and sampling of BS,



particularly those located in the distal bile duct. It should be strongly considered as

part of a comprehensive BS workup. However, EUS has limitations when strictures are

caused by intraductal vegetative lesions, when they are located in the biliary hilum, or

if biliary stents are already present.

Digital single operator cholangioscopy (D-SOC) has gained popularity due to recent

technological advances, its availability and its advantages, such as allowing the direct

visualization of the BS and the surrounding mucosa, and performing targeted biopsies.

D-SOC is a safe procedure and can be cost effective at initial ERCP in certain situations
60. While D-SOC demonstrates high success in identifying BS through visual assessment,

with sensitivity and specificity rates of 94% and 95% respectively, the accuracy of D-

SOC-guided biopsies is lower 61. Sensitivity in this context ranges from 74% to 80%,

while specificity remains high at 98% 62,63. This highlights that tissue sampling might

not be as reliable for diagnosis as endoscopic direct visualization. Some visual findings

have been statistically associated with malignancy, like the presence of

neovascularization or dilated tortuous vessels, irregular or nodular biliary mucosa,

tumors or masses, irregular surface with ulcerated, infiltrative, or friable appearance
64,65. But to date, there is a suboptimal inter-observer agreement among experts for

interpreting the visual impression of BS. Moreover, some high-risk features can be

present in certain benign instances, such as primary sclerosing cholangitis, which can

result in false-positive malignant diagnoses.

Given the aforementioned limitations in the diagnostic approach to BS, there has been

an increasing interest in exploring the potential of AI to overcome them. AI can

potentially impact BS diagnosis by providing categorization (i.e., discriminating

malignant BS from non-malignant BS) as well as improving the morphologic

classification that has scarcely been assessed. A handful of important studies have

been published in the last two years evaluating the accuracy of CNN in BS. In 2022

Saraiva et al evaluated the performance of their CNN on distinguishing between

benign and malignant BS. With a total of 11,855 images from 85 patients (9695

malignant strictures and 2160 benign findings), the model had an overall accuracy of

94.9%, sensitivity of 94.7%, specificity of 92.1%, and AUC of 0.988 in cross-validation

analysis 66. Several important publications emerged in this setting during 2023. One



such study by Marya et al. evaluated the accuracy of their CNN for classifying BS

compared to traditional ERCP-based sampling techniques. By analyzing 2,388,439 still

images from 154 patients, their CNN demonstrated an overall accuracy of 0.906 for

CNN-based video analysis, significantly greater than brush cytology (0.625, p = 0.04) or

forceps biopsy sampling (0.609, p = 0.03). Their occlusion block heatmap analysis

demonstrated that the most frequent image feature for a malignant BS was the

presence of frond-like mucosa/papillary projections 67. Later, Carlos Robles-Medranda

(CRM) et al developed a new cholangioscopy based CNN for recognizing neoplasia in

indeterminate BS in pre-recorded videos and real-time D-SOC procedures, and

compared the model with cholangioscopy experts and nonexperts using the CRM and

Mendoza classifications. This model achieved significant accuracy values for neoplastic

diagnosis, with a 90.5 % sensitivity, 68.2 % specificity, and 74.0 % and 87.8 % positive

and negative predictive values, respectively, and outperformed the two nonexperts

and one of two expert endoscopists 21. Simultaneously, Zhang et al. proposed a

different model (MBSDeiT) capable of automatically selecting qualified DSOC images

with high accuracy (AUC of 0.963 - 0.973 across internal and external testing data sets)

and subsequently identifying 92.3% of malignant BS in prospective videos. MBSDeiT

outperformed both expert and novice endoscopists 23.

Ultimately Saraiva et al, evaluated their CNN with 84,994 images from 129 D-SOC

exams in two centers (Portugal and Spain). The model achieved an 82.9% overall

accuracy, 83.5% sensitivity and 82.4% specificity, with an AUC and AUPRC of 0.92 and

0.93, respectively. This model additionally showed outstanding performance in

detecting tumor vessels and papillary projections, with AUC values of 0.98 and 0.96,

respectively 24. AI-based on clinical biomarkers like alkaline phosphatase, intrahepatic

bile duct diameter and total bile duct diameter, could also serve as an auxiliary for

diagnosing malignant bile duct obstruction 68.

AI has also been evaluated to evaluate different aspects of ERCP. A computer-assisted

system using CasNet, a segmentation architecture of DL trained on 1381

cholangiogram images, showed effectively assessment and classification of the degree

of technical difficulty in endoscopic stone extraction during ERCP 69. Additionally, CNN-

based models have been developed to predict the location and the difficulty of



cannulation of the ampulla 70. Machine learning models have also been proposed to

predict post ERCP pancreatitis probability and identify new clinical features relevant

for the risk 71.

Table 2. Main studies evaluating CNN-based DL for Biliary Strictures Diagnosis



Author

(year)

Patient

Population

(n)

Objective Study

characterisitics

Main outcomes

Saraiva et

al, (2022)
66

85 Automatic

detection of

malignant BSs in

DSOC images

Pilot validation

study

Overall accuracy

94.9% sensitivity

94.7%, specificity

of 92.1%, AUC

0.988 for

differentiating

malignant from

benign BS.

Marya et

al, (2023)
67

154 Analyzing DSCO

images in real-

time to

accurately

classify biliary

strictures

Multicenter

validation study

CNN had greater

accuracy for biliary

stricture

classification

(0.906) than that of

brush cytology (0.6

25, P = 0.04) or

forceps biopsy

sampling

(0.609, P = 0.03).

Robles-

Medranda

et al,

(2023)
21

Phase 1

48

Phase 2

116

Validation of a

CNN model for

identification

malignancy in

indeterminate

BS

International

multicenter,

Two-stage

validation

study

90.5 % sensitivity,

68.2 % specificity,

and 74.0 % / 87.8 %

PPV and NPV,

respectively in

distinguishing

neoplastic lesions.

Zhang et

al, (2023)
23

150 Validation of a

novel AI model

to identify and

predict

malignant BS

Multicenter

diagnostic

study

MBSDeiT

accurately

identified 92.3% of

malignant BS in

prospective testing

videos.

Saraiva et

al, (2023)
24

129 Distinguishing

benign from

malignant BS

and detection

of morphologic

features of

malignancy

International

multicenter

study

Sensitivity 83.5%,

specificity 82.4%

and 82.9% overall

accuracy. AUC

0.92. And AUC

values of 0.98 and

0.96 in detecting

tumor vessels and

papillary

projections.



LIMITATIONS OF ARTIFICIAL INTELLIGENCE AND ETHICAL ISSUES

Employing AI-assisted advancements in gastroenterological techniques, which enable

endoscopists to see more and beyond in order to make better decisions, requires

careful consideration of precautions to ensure trustworthiness. Technological

development should follow the FAIR data principles 72. To maximize AI's potential in

healthcare, it must be findable (with clear data labelling and unique patient

identifiers), accessible (ensuring transparent data sources for verifying algorithm

robustness), interoperable (compatible with various devices for wider use), and

reusable (promoting the use of open-source frameworks and allowing datasets to be

reused whenever they prove useful in addressing clinical challenges). In addition to

complex data acquisition and standardization, privacy concerns arise as data is

collected, requiring robust protection. Healthcare blockchain innovations may address

this, offering decentralized and secure data frameworks 73,74. Addressing inherent

selection biases is also critical to ensure a transparent and transferable AI, achievable

only through high-quality training data 75.

Furthermore, there are two AI-related ethical challenges that should be considered.

One concern is the “black-box” characteristic of these algorithms, implying that AI

models can identify patterns (e.g. lesions) imperceptible by physicians 76. Even though

understanding how some medical interventions work remains a challenge (for

example, how certain drugs improve a patient's outlook without a fully known

mechanism), there's a stronger resistance to AI making decisions in medicine without

any human involvement 77. The second concern tends to arise as a consequence of the

first one. If the AI model identifies a lesion that the physician disagrees with, and it

turns out there was a lesion, should the doctor be held responsible? Conversely, if the

machine fails to detect a lesion that later appears (e.g. false negative), who should be

accountable: the doctor or the AI model development company? FDA is currently

approving Computer-aided detection and diagnosis (CADe and CADx, respectively)

systems as Software as a Medical Device (SaMD). SaMD clearance implies that such

technology aids in detecting clinically relevant lesions, but does not make diagnosis,



with the ultimate responsibility lying with the physician 78. In the current moment,

there are three commercially approved technologies: Gi Genius® by MedtronicTM,

SKOUT® by Iterative Health™, Veritai® by Satisfai Health™.

The development of AI models is crucial for enhancing the diagnostic capabilities of

EUS. However to ensure widespread clinical use, AI models must work accurately

across different EUS devices. A significant concern in the development of DL models is

the existence of an imbalanced dataset that is not adapted to the population in which

the technology will be used, limiting the external validity of the results.

The use of AI-based endoscopic imaging for the diagnosis of BS has several potential

clinical benefits that include reducing tissue sampling techniques, resulting in fewer

procedures and its associated costs and adverse events and also reducing the

paradoxical gap between visual impression and histology. It can also have an

academical benefit, providing expert and non-expert endoscopists of a second opinion

on lesions suggestive of neoplasia, helping to obtain a targeted sample, and reducing

the current suboptimal level of interobserver agreement.

While promising, robust clinical adoption of AI necessitates further development and

rigorous external validation. Currently, a significant limitation is the reliance on

relatively small datasets, hindering the ability of algorithms to generalize across

diverse patient populations. Continued research utilizing larger, more comprehensive

datasets is crucial for ensuring reliable performance. Understanding real-world

benefits, addressing ethical considerations, adherence to FAIR data principles, and a

focus on clinical validation hold the key to revolutionizing diagnostic accuracy,

optimizing interventions, and ultimately improving patient outcomes. Despite these

challenges, the potential of AI in this field remains undeniable.
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Fig. 1. Main types of AI used in digestive endoscopy.

Fig. 2. Output provided by artificial intelligence for distinguishing between various

types of solid pancreatic lesions during an endoscopic ultrasound (EUS) examination.



Fig. 3. Images of biliary stenosis in digital single operator cholangioscopy (3A). Output

of a convolutional neural network for diferentiation between malignant and benign

biliary stenosis (3B).


