

Title:

Calcitonin gene-related peptide (CGRP) in the pathophysiology of gastrointestinal disorders - A key mediator in the gut-brain axis

Authors:

Marta Pascual-Mato, Gabriel Gárate Viñas, María Muñoz San Martín, Vicente González-Quintanilla, Javier Crespo, Montserrat Rivero Tirado, Julio Pascual Gómez

DOI: 10.17235/reed.2025.11310/2025

Link: [PubMed \(Epub ahead of print\)](#)

Please cite this article as:

Pascual-Mato Marta, Gárate Viñas Gabriel, Muñoz San Martín María, González-Quintanilla Vicente, Crespo Javier, Rivero Tirado Montserrat, Pascual Gómez Julio. Calcitonin gene-related peptide (CGRP) in the pathophysiology of gastrointestinal disorders - A key mediator in the gut-brain axis. Rev Esp Enferm Dig 2025. doi: 10.17235/reed.2025.11310/2025.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Calcitonin gene-related peptide (CGRP) in the pathophysiology of gastrointestinal disorders - A key mediator in the gut-brain axis

Running title: CGRP and gut-brain axis

Marta Pascual-Mato¹, Gabriel Gárate², María Muñoz², Vicente González-Quintanilla², Javier Crespo¹, Montserrat Rivero¹, Julio Pascual²

¹*Service of Gastroenterology and Hepatology and* ²*Service of Neurology, University Hospital Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain*

Keywords: Constipation. Diarrhea. CGRP. Gut-brain axis. Inflammatory bowel disease. Migraine.

Acknowledgments: *We are grateful to our nurse María Soledad Serrano for her continuous support and to our colleague Dr. Joaquín Cabezas for his critical reading of the manuscript.*

Funding sources: *Our research in this field has been founded by Instituto de Salud Carlos III (ISCIII) through the project PI20/01358, co-funded by Fondos Europeos de Desarrollo Regional (FEDER), “Una manera de hacer Europa”, and through the project PMP22/00183, co-funded by the Recovery and Resilience Plan by the European Union NextGenerationUE.*

Abbreviations: *Enteric nervous system (ENS); Central nervous system (CNS); Transient receptor potential vanilloid 1 (TRPV1); Gastrointestinal (GI); Inflammatory bowel disease (IBD); ROR+ T regulatory cells (Treg); Calcitonin receptor-like receptor (CALCRL); Calcitonin gene-related peptide (CGRP); Calcitonin gene-related peptide genes (CALCA/CALCB) Receptor activity-modifying protein 1 (RAMP1); Knock-out (KO).*

Authors Contributions: *Conceptualization and writing-original draft preparation: M.P.M, G.G. and J.P. Literature review, and critical revision of the final version of the manuscript; M.P.M., M.M., V.G.Q., J.C. and M.R. funding acquisition and supervision: J.P. The final version of the manuscript has been revised and approved by all the authors.*

Disclosures: *The authors declare no conflict of interest.*

Correspondence: Marta Pascual-Mato. Servicio de Gastroenterología y Hepatología. Hospital Universitario Marqués de Valdecilla. Av Valdecilla s/n 39008 Santander. Spain. e-mail: marta.pascual@scsalud.es

ABSTRACT

The concept “gut-brain axis” means a bidirectional communication between the central nervous system and the gastrointestinal (GI) tract. This axis is key in keeping the physiological homeostasis of the GI tract and its dysfunction has been implicated in a number of neuropsychiatric and gut conditions. Several neurotransmitters are known to be involved in the performance of gut-brain axis. Our objective has been to review and critically analyze the contribution of the calcitonin gene-related peptide (CGRP) in the physiology and pathophysiology of the gut-brain axis, with emphasis in the fresh, basic, and clinical evidence supporting an outstanding role of this neuropeptide. This article presents a narrative review based on recent literature and original data previously published by our research group. CGRP is considered the pivotal molecule and the first biomarker of migraine, a debilitating disease combining digestive and neurological symptoms. A number of recent experimental and clinical data support a relevant protective role for CGRP, and in particular for beta-CGRP, the isoform located in the enteric nervous system, in the gut-brain axis proper functioning and in the pathophysiology of several gut diseases, including conditions such as diverticular disease, acute infectious diarrhea or inflammatory bowel disease. As examples of its adaptable behavior, circulating beta-CGRP levels are increased in patients with acute diarrhea in COVID-19 infection or reduced already in the early phases of inflammatory bowel disease. In addition, beta-CGRP antagonism could explain the constipation seen with the new CGRP antagonists used in the preventive treatment of frequent migraine. These evidences indicate a relevant role of CGRP in gut-brain axis functioning and call for analyzing a potential role of CGRP in other common diseases of the GI tract, comorbid with brain conditions, such as irritable bowel syndrome or chronic constipation.

THE GUT-BRAIN AXIS CONCEPT

There are at least 200 million neurons in the human gut. Although this enteric nervous system (ENS), “the second brain”, contains a high proportion of the intestinal nervous structures and regulates gut functions autonomously, also extrinsic nerves connect the central nervous system (CNS) and the gut. These extrinsic neurons come from the dorsal root and nodose ganglia as well as from the autonomic neurons that reside in the sympathetic and brainstem ganglia and modulate the activity of the ENS (1-3). Dorsal root and nodose neurons function primarily as sensory neurons and possess receptors (4), such as transient receptor potential vanilloid 1 (TRPV1), able to detect mechanical stretch, dietary or noxious stimuli (5). The concept “gut-brain axis” means, therefore, a two-way, afferent and efferent, communication between the CNS and the gastrointestinal (GI) tract. CNS and GI tract cells develop simultaneously from the neural crest during pregnancy, remain connected via the autonomic nervous system lifelong and secrete the same neurotransmitters (6). As an example, brain is known to control GI movements and functions (sensory and secretion) via the hypothalamic-pituitary-adrenal axis as a response to stress. On the other hand, GI tract is believed to be able to affect a variety of CNS functions and this efferent gut-brain arm has been involved in the pathophysiology of disorders, such as depression-anxiety, neurodegenerative conditions, multiple sclerosis, or migraine (7,8). Inflammatory mediators, nutritional compounds or the gut microbiota profile can influence this complex gut-brain interaction. Migraine is an excellent model of this interaction (9,10). First, GI symptoms are relevant in the clinical picture of migraine or of its variants, such as cyclic vomiting syndrome. Second, there is an increased frequency of several GI disorders in patients with migraine compared to the general population. Irritable bowel syndrome, *Helicobacter pylori* infection, gastroparesis, celiac disease, some hepatobiliary disorders and inflammatory bowel disease (IBD) have been linked to the occurrence of migraine (9,11-13). Current evidence supports the idea that gut microbiota exerts dramatic effects on the development and functions of the CNS, possibly via the vagal nerve (14,15). More than

100 trillion microorganisms live in our intestine, the biggest population of commensal microorganisms of all body surfaces, and within the gut-associated lymphoid tissue houses three quarters of the immune cells in our body (16). This complex microbial environment is separated from the host by a layer of columnar intestinal epithelial cells. Vagal afferents, containing receptors for signaling molecules released in this environment, are close to these mucosal immune cells and project to the nucleus tractus solitarius, interestingly the brain nucleus responsible for the control of nausea and vomiting, two pivotal migraine symptoms. From this brainstem nucleus second-order neurons project to cortical and subcortical regions, including the dorsal motor nucleus of the vagus, which provide the vagal motor output to the GI tract (1-4). Psychological or physical stress factors are able to induce a change in the microbiota profile as a result of an increased synthesis of corticotropin-releasing hormone in the hypothalamus, which induces cortisol secretion from the adrenal glands, and leads to changes in the gut permeability. This abnormal permeability modifies the physiological microbiota homeostasis and finally results in dysbiosis. In the other sense, primary dysbiosis of the GI tract microbiota releases neurotransmitters and proinflammatory molecules able activate the hypothalamic-pituitary-adrenal axis via vagal afferents (9,10,14-16) (Figure 1). The human body could try to inhibit this release of inflammatory compounds by promoting stress-induced steroid response, but this response anyhow increases the dysbiosis. The activation of TRPV1+ neurons, those responsible for detecting noxious visceral signals to the nervous system, plays a pivotal role in this interaction between the neurons and the immune system by inducing a decrease of ROR+ T regulatory cells (Treg). These cells play a protective role in pain, through the release of anti-inflammatory cytokines such as IL-10 and production of endogenous opioids including proenkephalin (5).

We have briefly revised above the anatomical basis and the key role of intestinal microbiota and inflammation in gut-brain axis, but we should not forget that at the end, this connection should be mediated by chemical compounds. A number of molecules, including classical neurotransmitters, such as serotonin, dopamine, acetylcholine, glutamate or gamma-aminobutyric acid, or peptides, such as neuropeptide Y, vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, substance

P or alpha-melanocyte-stimulating hormone are released in the GI tract, exhibit a variety of antimicrobial, proinflammatory and anti-inflammatory effects and thus, are speculated to be involved in this bidirectional gut-brain interaction (14,17,18). Interestingly, it has been very recently demonstrated in a seminal paper that spinal afferent TRPV1+ neurons mediate Treg changes via the neuropeptide calcitonin gene-related peptide (CCRP) (5).

In this article we aim to discuss the contribution of CGRP in the physiology and pathophysiology of the gut-brain axis, with emphasis in the fresh, basic, and clinical evidence supporting an outstanding role of this neuropeptide.

CGRP BIOLOGY

Discovered in 1982, CGRP is a multifunctional peptide described as the result of the alternative splicing of the calcitonin gene (*CALCA* in humans) transcript, hence its name (19). This first form of CGRP was named as alpha-CGRP, as opposed to the beta-CGRP, encoded in a different gene (*CALB*), with a different regulation and expression pattern to the alpha-CGRP (20). These two isoforms of the peptide differ in 3 out of 37 amino acids of their sequence. Both alpha and beta-CGRP share a common structure and belong to the calcitonin family of peptides, also comprised by calcitonin, amylin, adrenomedullin 1 and adrenomedullin 2/intermedin. Both alpha and beta-CGRP bind to the CGRP receptor, a heterodimer formed of G-protein calcitonin receptor-like receptor (CLR) with the receptor activity-modifying protein 1 (RAMP1), which activates adenylyl cyclase and cAMP-dependent pathways (21-23). These increases in intracellular cAMP activate protein kinase A, which results in the phosphorylation of multiple downstream targets, including potassium-sensitive ATP channels, extracellular signal-related kinases and transcription factors such as cAMP-responsive element-binding protein. There is a second receptor that potentially responds to CGRP, the amylin receptor, AMY1, which consists of RAMP1 and the calcitonin receptor (23). There is little colocalization of CGRP with CGRP receptors, as CGRP is expressed in unmyelinated C-fibers and its receptor in the myelinated A δ fibers (24).

Well-known biological functions of CGRP comprise vasodilation, being the most potent vasodilator known, immunomodulation, angiogenesis and nociceptive signaling (21,22). Alpha-CGRP is expressed in areas of the central nervous system, such as dorsal roots, autonomic and trigeminal ganglia, and primary sensory neurons, which explains its key role in nociception and particularly in migraine pathophysiology. In fact, CGRP levels (and more specifically alpha-CGRP levels) have been proposed as the first migraine biomarker (25,26). Beta-CGRP is mainly found within the intrinsic intestinal myenteric neurons, which are capsaicin-insensitive. Beta-CGRP concentration in the intestine is seven times higher than that of alpha-CGRP (27,28). Therefore, theoretically it could be assumed that data about gut CGRP are mostly referring to beta-CGRP, though until very recently the studies do not differentiate between alpha and beta-isoforms (29), which explains that the role of beta-CGRP in GI has remained obscure. The immune cells of the GI tract also contain CGRP (30). CGRP receptors are located in several components of the GI tract, including vessels, muscle layers, mucosa, endocrine cells, immune cells and nerves. This peptide is thought to have several GI functions described in the next section, its role in increasing peristalsis and ions and water secretion being well-demonstrated (21,22).

CGRP IN EXPERIMENTAL MODELS OF GI DISORDERS

CGRP functions in the human GI tract are mainly inferred by experimental studies, animal models and ex-vivo specimens, but specific literature regarding CGRP actions on the physiology of GI tract is scarce.

In the stomach, CGRP has shown to regulate acid secretions through gastrin and somatostatin. In experimental models, CGRP has shown to increase somatostatin and decrease gastrin release in response to drops in the pH of the stomach, and its blockage decreases somatostatin release and increases gastrin, which may indicate a role in the regulatory response to acid mediated by gastric G and D cells (31). Furthermore, in experimental models of gastroduodenal ulcers induced by ethanol, CGRP mediates tissue healing, mainly through acid regulation and local vasodilation (32).

One of the many functions of CGRP is the regulation of GI motility. CGRP is released by local afferent neurons as a mechanism of intrinsic motility regulation, and also through extrinsic primary afferent neurons, as an external motility regulation, with both kinds of neurons usually responding to external stimuli. CGRP then activates interneurons and ultimately motor neurons, which can exert either inhibitory or excitatory stimulation of the muscle exerting prokinetic properties. This has been described in animal models, where CGRP release has been found to occur in response to colon distension, mucosal stimulation or muscle stretch and consequently increasing GI motility (33,34). To support this evidence, the external infusion of CGRP in healthy volunteers triggers the development of not only migraine-like headache, but also GI symptoms such as diarrhea, abdominal discomfort, nausea or vomiting (35). This CGRP-induced diarrhea can be reversed by the use of CGRP antagonists (36).

One of the most interesting functions of CGRP in the GI tract is immunity regulation and neurogenic inflammation, showing that sensory neurons in the GI tract can modulate both immune response and pain perception. In acute infection such as *Salmonella enterica*, CGRP is released in the dorsal root ganglia as a response to the infection (37). Furthermore, transgenic alpha and beta CGRP knock-out (KO) mice show an adult-onset spontaneous colitis and increased intestinal damage in using a dextran sulphate sodium experimental model of colitis (38). Interestingly, these beta-CGRP KO mice increase alpha-CGRP release in the dorsal root ganglia to maintain CGRP supply in the gut, but fail to control damage, which suggests a potential role of beta-CGRP in gut homeostasis. Furthermore, proteomic analysis shows that beta-CGRP KO mice have different protein expression profile in the colon tissue, with changes in the coagulation-fibrinolytic system and an increase of immunoproteasome expression compared to wild-type and alpha-CGRP KO mice. In other models of induced colitis such as instillation of trinitrobenzene sulfonic acid in a group of rats, blockage of CGRP, but not of substance P, increased ulcer index and increased mucosal damage compared to control rats (39).

Exploring the underlying regulatory mechanisms of intestinal inflammation mediated by CGRP, depending on the environment of which CGRP is released, it is shown that the neuropeptide can exert either proinflammatory or anti-inflammatory actions. For

example, in migraine, CGRP is released in the leptomeningeal space, activating mast cells and macrophages and liberating proinflammatory cytokines such as tumor necrosis factor alpha or interleukin 6 (40, 41). In the gut, TRPV1+ sensory neurons from the dorsal root ganglia respond to nociceptive signals, and release CGRP and substance P. These neurons can regulate macrophages, ROR+ Treg or type 2 innate lymphoid cells in the gut, promoting T helper 2 lymphocytes immune responses, which are key for gut homeostasis and defense (5). Chronic activation of these neurons in chronic pain or inflammation downregulates ROR+ Treg which mediate in pain perception, as well as increases local vasodilation and mast cell degranulation. In colon biopsies of patients with ulcerative colitis, CGRP concentration is associated with M2 macrophage response, with a positive correlation of CGRP mucosal levels and anti-inflammatory cytokine concentrations such as transforming growth factor beta, and a negative correlation with proinflammatory cytokines such as gamma interferon, interleukin 1 beta or tumor necrosis factor alpha (42). Moreover, CGRP increases chloride secretion in the colon as well as mucus protection by goblet cells, favouring barrier protection functions in the mucosa (43).

In summary, CGRP is implicated in multiple physiological “protective” processes within the GI tract, including gastric ulcer healing, local vasodilation, prokinetic activity, stimulation of intestinal mucus production and reinforcement of the intestinal barrier, and most notably, the regulation of the immune system and the neurogenic inflammation (Table 1, Figure 2).

CGRP IN HUMAN GI DISORDERS

As pointed out above, CGRP levels have been proposed as the first biomarker in migraine, a debilitating disease with patent GI symptoms (25,26). There are strong arguments supporting a key role of CGRP in migraine, a disease typically exhibiting several GI manifestations such as nausea, vomiting, abdominal pain or diarrhea (44). First, CGRP levels are increased within migraine attacks (45,46) and interictally in several fluids in patients with chronic migraine (47-50). Second, the intravenous infusion of CGRP leads to migraine-like headache and diarrhea (35). Finally, modern,

selective anti-CGRP drugs are highly efficacious in migraine treatment, even in patients refractory to conventional drugs (51,52) and, interestingly, their most frequent adverse event associated with these anti-CGRP therapies is constipation (52,53).

While the relationship of CGRP, and particularly for alpha-CGRP, with migraine has been well-demonstrated for years, until very recently the evidence for a role of CGRP in the pathophysiology of human GI disorders was scarce (Table 2). The first study was published in 2019 and, using quantitative fluorescence microscopy, showed that CGRP levels were declined by 52% of patients with symptomatic diverticular disease. Conversely, CGRP receptors were upregulated by 41% in the enteric ganglia and colonic longitudinal smooth muscle displayed an increase response to exogenous CGRP application, suggesting a hypersensitization mechanism to the decrease in CGRP levels in the ENS (54). These results illustrate that an imbalance in neuromuscular transmission is a major pathophysiological factor for diverticular disease and suggest that CGRP is an important molecular mediator in this condition.

The recent COVID-19 pandemic has provided an excellent model to test the role of CGRP in aspects of the pathophysiology in some of its clinical manifestations, which could also be extrapolatable to other human diseases. Interestingly, leaving aside respiratory symptoms, migraine-like headache and diarrhea are the two most common neurological and GI manifestations, respectively. As an inflammatory mediator, CGRP has been shown to be released in the acute phase of COVID-19 inpatients (55). This increase was seen for the two CGRP isoforms, but, interestingly, circulating alpha-CGRP levels were mainly increased in patients exhibiting headache (56) and beta-CGRP levels were increased in general, but selectively in patients who suffered from COVID-19 diarrhea (57). These data confirm a role of alpha-CGRP in the pathophysiology of headache, but also indicate that beta-CGRP can contribute to explain the mechanism behind the COVID-19 induced diarrhea.

Recent studies have confirmed that migraine prevalence, including that of chronic migraine, is increased in patients with IBD (58) and also that these two conditions share genetic background (59). This comorbidity between migraine and IBD is a further example of the bidirectional relationship between the GI tract and CNS (9,10). The neuronal influence on the inflammatory status of GI tract is well-demonstrated and

CGRP exerts a relevant role in migraine and in gut mucosa homeostasis (9,10). Circulating alpha-CGRP levels are increased, as compared to healthy controls, both in patients with chronic migraine and in patients with IBD (60). These results could reflect a chronic inflammatory underlying state, but also demonstrate that alpha-CGRP levels are not a totally specific migraine biomarker, though alpha-CGRP levels are further elevated in patients with IBD who have a history of migraine. By contrast, circulating levels beta-CGRP, the most abundant isoform in the human GI tract, are in the range of healthy controls in chronic migraine patients (47,48), but remain consistently low in the early phases of IBD, both in ulcerative colitis and in Crohn's disease (61). On the one hand, the increase in alpha-CGRP, mainly expressed in primary afferent neurons, both in migraine and IBD, reinforces the role of this CGRP isoform in nociception and, considering its effect on stomach motility, possibly on nausea/vomiting as well. On the other, the decrease in beta-CGRP levels already in early phases of IBD would confirm a protective role for this CGRP isoform in keeping the homeostasis of the GI tract in IBD. Whether this beta-CGRP reduction is a reason for or a consequence of the mucosal damage occurring in IBD is not known. However, its early decrease in IBD and the varied protective actions of beta-CGRP in experimental models of colitis (see above) support a role of this isoform in IBD pathophysiology since its early stages and calls for longitudinal studies testing beta-CGRP levels, circulating and also in intestinal biopsies, and IBD disease activity, as well as for analyzing gut homeostasis in migraine patients treated with anti-CGRP medications for long-term, particularly in those with IBD or other intestinal comorbid diseases.

Constipation is the most frequent adverse event of the new preventive migraine treatments antagonizing CGRP signaling (52,53). Our group has prospectively analyzed the circulating levels of both isoforms of CGRP in migraine patients treated with CGRP antibodies (48). As compared to healthy controls, alpha-CGRP levels are increased before treatment with anti-CGRP monoclonal antibodies and normalize after 3 months of treatment, mainly in those patients who show clinical response, while pretreatment circulating beta-CGRP levels are in the range of controls (48). However, beta-CGRP, but not alpha-CGRP levels, are significantly reduced at the third month selectively only in those patients with emergent constipation on CGRP antibodies (62). Again, these

results suggest that the antagonism on the alpha-CGRP isoform plays a relevant role in the nociceptive action of anti-CGRP drugs, but not on the development of constipation. By contrast, the specific reduction in beta-CGRP levels in patients with emergent constipation indicates a role for beta-CGRP antagonism in the development of this adverse event and, coming back to the link between diarrhea and increased beta-CGRP levels (57), shows an interesting chameleonic behavior of this isoform in different diseases of the GI tract supporting an intrinsic role of beta-CGRP in their pathophysiology.

CONCLUSIONS

A number of recent experimental and clinical data support a relevant protective role for CGRP, and in particular for the beta-CGRP isoform, in the gut-brain axis and therefore in the physiology of normal GI tract, and in the pathophysiology of several gut diseases, including conditions such as diverticular disease, acute infectious diarrhea or IBD. Beta-CGRP antagonism seems a plausible explanation for the constipation seen with the new CGRP antagonists used in the preventive treatment of frequent migraine. These evidences call for analyzing a potential role of CGRP in other common diseases of the GI tract, comorbid with brain conditions, such as irritable bowel syndrome, chronic constipation or functional defecation. Based on the current data available, it seems reasonable to consider potential clinical translational implications of these changes in CGRP isoforms. As examples, a decrease in beta-CGRP isoform in conditions such as diverticulosis or IBD could be an easy biomarker for monitoring a disruption of the physiological GI mucosa homeostasis and CGRP antagonists could be helpful in the treatment of acute diarrhea; however chronic CGRP blockade, as used now for frequent migraine treatment, should include follow-up for delayed GI adverse events.

REFERENCES

1. Costa M, Brookes SJ, Henning GW. Anatomy and physiology of the enteric nervous system. *Gut* 2000; 47 (Suppl. 4): 15-19.
2. Furness JB. The enteric nervous system and neurogastroenterology. *Nat Rev Gastroenterol Hepatol* 2012; 9: 289-94.
3. Benarroch EE. Enteric nervous system: functional organization and neurologic implications. *Neurology* 2007; 69: 1963-7.
4. Blackshaw LA, Brookes SJ, Grundy D, et al. Sensory transmission in the gastrointestinal tract. *Neurogastroenterol Motil* 2007; 19: 1-19.
5. Zhu Y, Meerschaert KA, Galvan-Pena S, et al. A chemogenetic screen for neuroimmune interplay reveals Trpv1+ neuron control of Tregs in gut. *Science* 2024; 385 (6708):eadk1679.Doi: 10.1126/science.adk1679.
6. Gershon MD, Chalazonitis A, Rothman TP. From neural crest to bowel: development to the enteric nervous system. *J Neurobiol* 1993; 24: 199-214.
7. Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases. *Curr Neurol Neurosci Rep* 2017; 17: 94. Doi: 10.1007/s11910-017-0802-6.
8. Agirman G, Yu KB, Hsiao EY. Signaling inflammation across the gut-brain axis. *Science* 2021; 374: 1087-92. Doi: 10.1126/science.abi6087.
9. Arzani M, Jahromi SR, Ghorbani Z, et al. Gut-brain axis and migraine headache: a comprehensive review. *J Headache Pain* 2020; 21:15. Doi: 10.1186/s10194-020-1078-10. Hindiyeh N, Aurora SK. What the gut can teach us about migraine. *Current Pain Headache Rep* 2015; 19: 33. Doi: 10.1007/s1916-015-0541-4.
11. Aamodt AH, Stovner LJ, Hagen K, et al. Comorbidity of headache and gastrointestinal complaints. The Head-HUNT study. *Cephalgia* 2008; 28: 144-51.
12. Cámará-Lemarroy CR, Rodríguez-Gutiérrez R, Montreal-Robles R, et al. Gastrointestinal disorders associated with migraine: a comprehensive review. *World J Gastroenterol* 2016; 22: 8149-60.
13. Van Hemert S, Breedveld AC, Rovers JMP, et al. Migraine associated with gastrointestinal disorders: review of the literature and clinical implications. *Front Neurol* 2014; 5: 241.Doi: 10.3389/fneur.2014.00241.

14. He Y, Wang K, Su N, et al. Microbiota-gut-brain axis in health and neurological disease: interactions between gut microbiota and the nervous system. *J Cell Mol Med* 2024; 28: e70099. Doi: 10.1111/jcmm.70099.
15. He Q, Wang W, Xiong Y, et al. Causal effects of gut microbiota in the development of migraine. *J Headache Pain* 2023; 24: 90. Doi: 10.1186/s10194-023-01609-x.
16. Mayer EA. Gut feelings: the emerging biology of gut-brain communication. *Nat Rev Neurosci* 2011; 12; 453-66.
17. Wei P, Keller C, Li L. Neuropeptides in gut-brain axis and their influence on host immunity and stress. *Comput Struct Biotechnol J* 2020; 18: 843-51.
18. Holzer P, Farzi A. Neuropeptides and the microbiota-gut-brain axis. *Adv Exp Med Biol* 2014; 817: 195-219.
19. Amara SG, Jonas V, Rosenfeld MG, et al. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. *Nature* 1982; 298: 240-4.
20. Brain SD, Macintyre AIN, Williams TJ, et al. A second form of human calcitonin gene-related peptide which is a potent vasodilator. *Eur J Pharmacol* 1986; 124: 349-52.
21. Russell FA, King R, Smillie SJ, et al. Calcitonin gene-related peptide: physiology and pathophysiology. *Physiol Rev* 2014; 94: 1099-142.
22. Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. *Physiol Rev* 2023; 103: 1565-644.
23. Hay DL, Garelja ML, Poyner DR, et al. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. *Br J Pharmacol* 2018; 175: 3-17.
24. Eftekhari S, Warfinvinge K, Blixt FW, et al. Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminal system. *J Pain* 2013; 14: 1289-303.
25. Ramón C, Cernuda-Morollón E, Pascual J. Calcitonin gene-related peptide in peripheral blood as a biomarker for migraine. *Curr Opin Neurol* 2017; 30: 281-6.
26. Pozo-Rosich P, Coppola G, Pascual J, et al. How does the brain change in chronic migraine? Developing disease biomarkers. *Cephalgia* 2021; 41: 613-30.

27. Schütz B, Mauer D, Salmon AM, et al. Analysis of the cellular expression pattern of beta-CGRP in alpha-CGRP-deficient mice. *J Comp Neurol* 2004; 476: 32-43.
28. Mulderry PK, Ghatei MA, Spokes RA, et al. Differential expression of alpha-CGRP and beta-CGRP by primary sensory neurons and enteric autonomic neurons of the rat. *Neuroscience* 1988; 25: 195-205.
29. Gárate G, Pascual J, Pascual-Mato M, et al. Untangling the mess of CGRP levels as a migraine biomarker: an in-depth literature review and analysis of our experimental experience. *J Headache Pain* 2024; 25: 69. Doi: 10.1186/s10194-024-01769-4.
30. Xing L, Guo J, Wang X. Induction and expression of beta calcitonin gene-related peptide in rat T lymphocytes and its significance. *J Immunol* 2000; 165: 4359-66.
31. Manela FD, Ren J, Gao J, et al. Calcitonin gene-related peptide modulates acid-mediated regulation of somatostatin and gastrin release from rat antrum. *Gastroenterology* 1995; 109: 701-6.
32. Hayashi H, Ohno T, Nishiyama K, Boku K, Katori M, Majima M. Transient prevention of ethanol-induced gastric lesion by capsaicin due to release of endogenous calcitonin gene-related peptide in rats. *Jpn J Pharmacol* 2001; 86: 351-4.
33. Holzer P, Bartho L, Matusak O, et al. Calcitonin gene-related peptide action on intestinal circular muscle. *Am J Physiol Gastrointest Liver Physiol* 1989; 256(3 Pt 1):G546-52. Doi:10.1152/ajpgi.1989.256.3.G546.
34. Ono T, Nagao M, Imoto H, et al. Effects of calcitonin gene-related peptide on colonic motility and defecation in conscious dogs. *J Gastrointest Surg* 2018;22: 2097-103.
35. Falkenberg K, Bjerg HR, Olesen J. Two-hour infusion causes gastrointestinal hyperactivity: possible relevance for CGRP antibody treatment. *Headache* 2020; 60:929-37.
36. Kaiser EA, Rea BJ, Kuburas A, et al. Anti-CGRP antibodies block CGRP-induced diarrhea in mice. *Neuropeptides* 2017; 64: 95-9.
37. Lai NY, Musser MA, Pinho-Ribeiro FA, et al. Gut-innervating nociceptor neurons regulate Peyer's patch microfold cells and SFB levels to mediate *Salmonella* host defense. *Cell* 2020; 180: 33-49..

38. Thompson BJ, Washington MK, Kurre U, et al. Protective roles of alpha calcitonin and beta-calcitonin gene-related peptide in spontaneous and experimentally induced colitis. *Dig Dis Sci* 2008; 53: 229-41.
39. Engel MA, Khalil M, Siklosi N, et al. Opposite effects of substance P and calcitonin gene-related peptide in oxazolone colitis. *Dig Liver Dis* 2012; 44: 24-9.
40. Manning BM, Gruba SM, Meyer AF, et al. Neuropeptide-induced mast cell degranulation and characterization of signalling modulation in response to IgE conditioning. *ACS Chem Biol* 2016; 11: 3077-83.
41. Balciak LK, Russo AF. Dural immune cells, CGRP, and migraine. *Front Neurol* 2022; 13:1-13. doi:10.3389/fneur.2022.862323.
42. Wu W, Feng B, Liu J, et al. The CGRP/macrophage axis signal facilitates inflammation recovery in the intestine. *Clin Immunol* 2022; 245:109154. Doi: 10.1016/j.clim.2022.109154.
- 43 Yang D, Jacobson A, Meerschaert KA, et al. Nociceptor neurons direct goblet cells via a CGRP-RAMP1 axis to drive mucus production and gut barrier protection. *Cell* 2022; 185: 4190-205.
44. Ailani J, Kaiser EA, Mathew PG, et al. Role of calcitonin gene-related peptide on the gastrointestinal symptoms of migraine: clinical considerations. A narrative review. *Neurology* 2022, 99, 841-53.
45. Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. *Ann Neurol* 1990; 28: 183-7.
46. Rodríguez-Osorio X, Sobrino T, Brea D, et al. Endothelial progenitor cells: A new key for endothelial dysfunction in migraine. *Neurology* 2012; 79: 474-9.
47. Cernuda-Morollón E, Larrosa D, Ramón C, et al. Interictal increase of CGRP levels in peripheral blood as a biomarker for chronic migraine. *Neurology* 2013; 81: 1191-6.
48. Gárate G, González-Quintanilla V, González A, et al. Serum alpha and beta-CGRP levels in chronic migraine patients before and after monoclonal antibodies against CGRP or its receptor. *Ann Neurol* 2023; 94: 285-94.
49. Alpuente A, Gallardo VJ, Asskour L, et al. Salivary CGRP and erenumab treatment response: towards precision medicine in migraine. *Ann Neurol* 2022; 92: 846-59.

50. Van Dongen RM, Zielman R, Noga M, et al. Migraine biomarkers in cerebrospinal fluid: a systematic review and meta-analysis. *Cephalalgia* 2017; 37: 49-63.
51. Edvinsson L, Haanes KA, Warfvinge K, et al. CGRP as the target of new migraine therapies—successful translation from bench to the clinic. *Nat Rev Neurol* 2018; 14: 338-50.
52. Caronna E, Alpuente A, Torres-Ferrus M, et al. CGRP monoclonal antibodies and CGRP receptor antagonists (Gepants) in migraine prevention. *Handb Clin Neurol* 2024; 199: 107-24.
53. Mesina R, Huessler EM, Puledda F, et al. Safety and tolerability of monoclonal antibodies targeting the CGRP pathway and gepants in migraine prevention: A systematic review and network meta-analysis. *Cephalalgia* 2023; 43, 1-13. Doi: 10.1177/03331024231152169.
54. Pauza AG, Rysevaite-Kyguoliene K, Mailinauskas M, et al. Alterations in enteric calcitonin gene-related peptide in patients with colonic diverticular disease: CGRP in diverticular disease. *Auton Neurosci* 2019; 216: 63-71
55. Gárate G, Pascual M, Rivero M, et al. Serum calcitonin gene-related peptide α and β levels are increased in COVID-19 inpatients. *Arch Med Res* 2023; 54: 56-63.
56. Gárate G, Toriello M, González-Quintanilla V, et al. Serum alpha-CGRP levels are increased in COVID-19 patients with headache indicating an activation of trigeminal system. *BMC Neurol* 2023; 23: 109. Doi: 10.1186/s12883-023-03156-z.
57. Gárate G, Pascual M, Olmos JM, et al. Increase in serum calcitonin-gene related peptide β (CGRP β) levels in COVID-19 patients with diarrhea: An underlying mechanism? *Dig Dis Sci* 2022, 67: 5712-3.
58. Pascual-Mato M, Gárate G, de Prado-Tejerina C, et al. Increased prevalence of migraine in women with inflammatory bowel disease: a cross-sectional study. *Cephalalgia* 2024; 44: 1-10. Doi: 10.1177/03331024241233979
59. Chasman DI, Guo Y, Chan AT, et al. Shared genetics of migraine and gastrointestinal disorders implicates underlying neurologic mechanisms yet heterogeneous etiologies. *Neurol Genet* 2024; 10: e200201. Doi: 10.1212/NXG.0000000000200201.
60. Pascual-Mato M, Gárate G, González-Quintanilla V, et al. Differences in circulating alpha-calcitonin gene-related peptide levels in inflammatory bowel disease and its

relation to migraine comorbidity: a cross-sectional study. *Headache* 2024; 64: 849-58.

61. Pascual-Mato M, Gárate G, González-Quintanilla V, et al. Unravelling the role of beta-CGRP in inflammatory bowel disease and its potential role in gastrointestinal homeostasis. *BMC Gastroenterol* 2024; 24:262. Doi: 10.1186/s12876-024-03366-w.

62. Gárate G, Polanco M, Madera J, et al. Influence of constipation in the behavior of circulating alpha and beta-CGRP levels in chronic/high frequency migraine patients after CGRP monoclonal antibodies. *Biomedicines*. In press.

Accepted Article

Table 1. Physiological effects of CGRP in the GI tract

Location	Functions
Stomach	<ul style="list-style-type: none">- Regulation of gastric acid secretion through vagal afferents (alpha-CGRP)- Local vasodilation and tissue healing (both isoforms)
Small bowel/Colon	<ul style="list-style-type: none">- GI motility regulation (both inhibitory and excitatory functions, but mainly prokinetic effects, beta- CGRP isoform)- Local vasodilation (both isoforms)- Nociception (both isoforms, mostly alpha-CGRP)- Immune regulation of neurogenic inflammation (both isoforms)- Chloride secretion, colon (both isoforms)- Stimulation of intestinal mucus production (both isoforms)

Table 2. Summary of current data of CGRP and human GI tract diseases

Condition	Main finding	Reference
Diverticular disease	-CGRP levels reduced by 52% in enteric ganglia by quantitative fluorescence microscopy	54
COVID-19 infection	-Increase in alpha and beta-CGRP circulating levels -Increase of alpha-CGRP circulating levels in patients with headache -Selective increase in beta-CGRP levels in patients with diarrhea	55 56 57
Diverticular disease and IBD	Genetic sharing at <i>CALCA/CALCAB</i> * genes	59
IBD	-Increase in alpha-CGRP circulating levels, mainly in patients with comorbid migraine -Reduction in circulating beta-CGRP levels in early phases of IBD	60 61
Constipation with anti-CGRP	-Normal alpha-CGRP circulating levels -Decrease in patients with emergent constipation	62 62

**CALCA/CALCAB* are the genes encoding to two isoforms of CGRP



Figure 1. Gut-brain axis response to stress. Stress induces changes in the microbiota and alters intestinal permeability, which then activates both immune cells and sensory vagal afferents. Vagal afferents activate NTS and then project to subcortical regions and DMN as well as subcortical regions. Neurotransmitters and inflammatory cytokines, as well as mental health conditions such as stress or anxiety, can activate the hypothalamic-pituitary-adrenal axis. Cortisol release prolongs increased intestinal permeability and dysbiosis in the gut. NTS: nucleus tractus solitarius, DMN: dorsal motor nucleus, CRH: corticotrophin-releasing hormone, ACTH: adrenocorticotrophic hormone. Figure created with *Biorender.com*

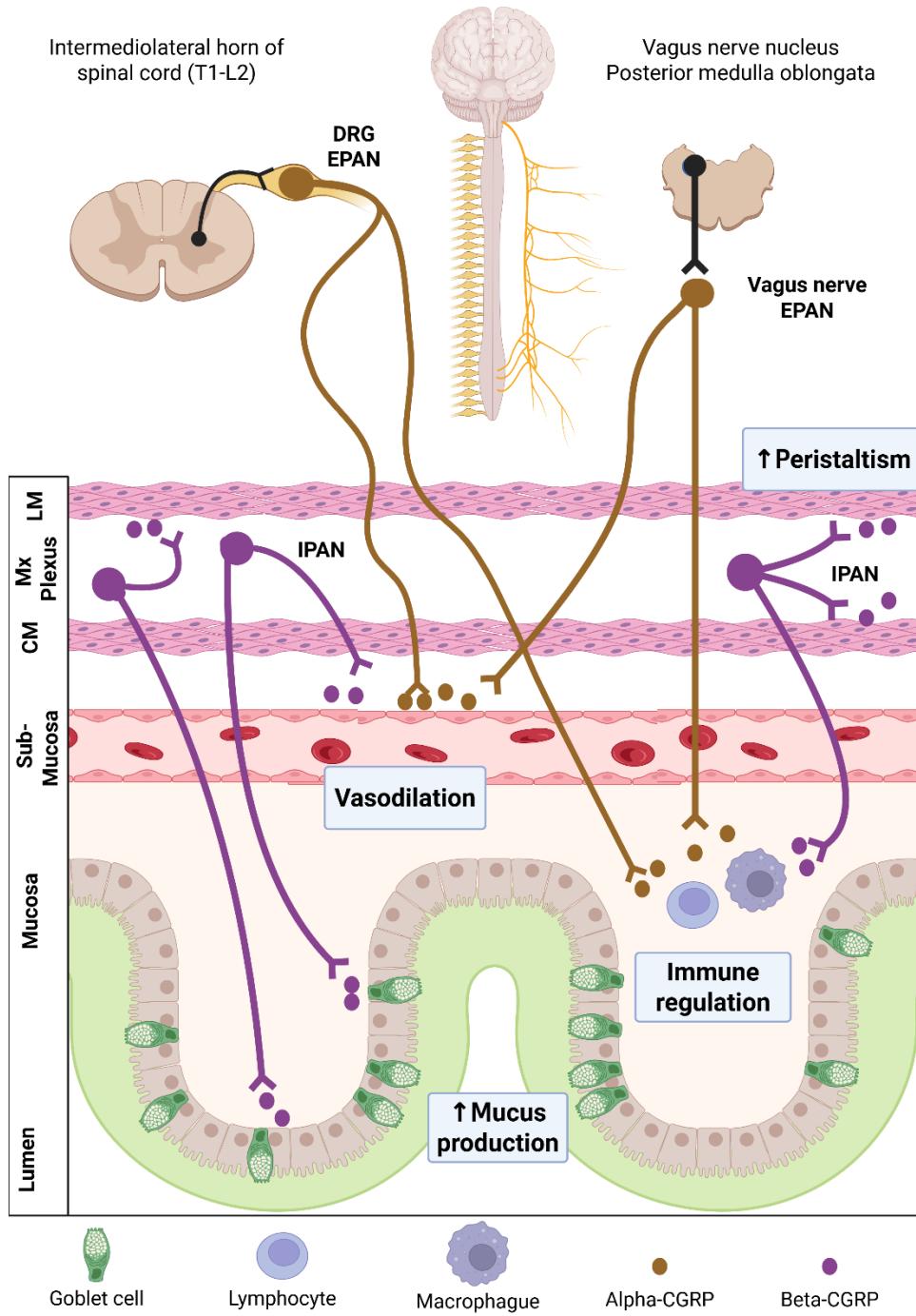


Figure 2. Summary of CGRP release and functions in the GI tract. First order neurons originate from intermediolateral horn of spinal cord (T1-L2) and vagus nerve nucleus in posterior medulla oblongata. From there, they connect with EPANS, which originate from the DRG and vagus nerve, respectively. EPANS release alpha-CGRP, contributing to immune regulation and local vasodilation. Beta-CGRP is released by IPANS, allocated in the myenteric plexus. IPANS release beta-CGRP to stimulate peristalsis and mucus production, as well as vasodilation and immune regulation similar to alpha-CGRP functions DRG: dorsal root ganglia. EPAN: extrinsic primary afferent neurons. IPAN: intrinsic primary afferent neurons. LM: longitudinal muscle layer, CM: circular muscle layer, Mx plexus: myenteric plexus. Figure created with *Biorender.com*

Accepted Article