Accepted Article

Agenesis of the dorsal pancreas: systematic review of a clinical challenge

Javier A.-Cienfuegos, Fernando Rotellar, Joseba Salguero, Alberto Benito, José Luis Solórzano, Bruno Sangro

DOI: 10.17235/reed.2016.4474/2016
Link: PDF

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
AGENESIS OF THE DORSAL PANCREAS: SYSTEMATIC REVIEW OF A CLINICAL CHALLENGE

Shortened title: Agenesis of dorsal pancreas

Authors: Javier A. Cienfuegos, MD, PhD*1 (corresponding author); Fernando Rotellar, MD, PhD1, Joseba Salguero, MD1; Alberto Benito, MD, PhD2; José Luis Solórzano, MD3; Bruno Sangro, MD, PhD4

1 Department of General Surgery, Clínica Universidad de Navarra, School of Medicine, University of Navarra, Pamplona, Spain
2 Department of Radiology, Clínica Universidad de Navarra, School of Medicine, University of Navarra, Pamplona, Spain
3 Department of Pathology, Clínica Universidad de Navarra. School of Medicine, University of Navarra, Pamplona, Spain
4 Hepatology Unit. Department of Internal Medicine. Clínica Universidad de Navarra, School of Medicine, University of Navarra, Pamplona, Spain

The authors declare that they have no conflict of interest

Author for correspondence

Tel.: 00-948-296797. Fax: 00-948-296500. E-mail address: fjacien@unav.es
ABSTRACT

Background: Agenesis of the dorsal pancreas is a rare malformation. Since 1911 until 2008, 53 cases have been reported. Several authors have recently described the association of this anomaly with neoplasm of the ventral pancreas ventral, with occasion of a case we performed a systematic review following on 2008.

Methods
A systematic review of the MedLine and ISI Web of Science Databases from 2008 until 2015 was carried out identifying 30 articles, which met the inclusion criteria, with a total of 53 patients: 7 children and 46 adults.

Conclusions
Although dorsal pancreatic agenesis is a rare malformation, given its association with non-alcoholic pancreatitis and neoplasms of the residual pancreas, physicians should maintain an expectant attitude.

Key words: dorsal agenesis of the pancreas; short pancreas; Diabetes Mellitus; mucinous cyst; pancreas anomaly
Introduction

Dorsal pancreatic agenesis (DPA) is a very rare malformation which consists of the absence of the neck, body and tail of the pancreas derived from the bud of the dorsal endoderm (1, 2). Since this anomaly was first described in 1911, until 2008 53 cases have been reported (3, 4). Several authors have reported an association between DPA and acinar-ductal metaplasia (ADM), and the neoplasm of the remnant pancreas (ventral pancreas) and diabetes (5-9).

The purpose of this systematic review was to evaluate the clinical features and pathologic findings of patients with DPA following on from seminal study by Schnedl (4).

Methods

Search Strategy

We search medical literature using a comprehensive text word and MESH-based electronic search of MEDLINE and EMBASE; the Pub Med database and Scopus was queried including the terms: *dorsal pancreatic agenesis, short pancreas, pancreatic agenesis, pancreatic hypoplasia, pancreatic anomaly and pancreatic aplasia* from 1998 until December 2015 excluding all the cases previously reported by Schnedl (4). Additionally the references of relevant articles were hand searched for additional material. The search included abstracts, case-series, case reports, editorialis, letters to the editor, and images in gastroenterology. We excluded review articles, studies reporting on fetuses, research animals, those in which clinical and pathologic data were missing, letters related to reported cases or those where the full text or abstract was nor written in English, Spanish, French or German. The search was performed by the two authors –
JAC and JS - and the results were contrasted with one of the senior authors (FR).

Eligibility Criteria and Data collection

All reports on DPA were included, which described at least 1 case. Full-text articles were obtained to clarify potential eligibility and the selected studies were evaluated in accordance with the Preferred reporting Items for Systematic reviews and Meta-Analysis (PRISMA) statement (10). Two authors (JAC, FR) independently assessed the studies selected and extracted the following data: first author, year of publication, country of origin, number of patients, age, gender, type of clinical presentation, associated disorders, genetic analyses, radiologic characteristics, treatment undertaken and pathology report.

Results

In total 1021 articles were retrieved from the primary database search and 54 articles were retrieved by manual cross-search of the reference list. Following removal of duplicates, 293 articles were assessed for further analysis; screening of the titles and abstracts enabled us to exclude 240 articles. The full-text articles of the remaining 41 studies were assessed for eligibility, we then excluded all reviews, commentaries on published cases and those studies not meeting the requirements for DPA: short pancreas or pancreatic hypoplasia. We excluded the cases of complete agenesis of the pancreas (3 articles), the so-called short pancreas (5 articles) and others reported as atrophy of the body and tail. A flow chart of the literature search is show in Figure 1. Overall 30 articles met the inclusion criteria and these reported on 53 patients; 7 children and 46 adults. The disorders associated with the 53 cases reported since 2008 are summarized in Table 1 (5-9, 11-34).
Abdominal pain and Diabetes Mellitus were the most frequent clinical manifestation in 10 patients. Nine of the 53 patients underwent total pancreatectomy mainly for adenocarcinoma of the pancreas (Table 1). Notably 4 cases were incidentally diagnosed.

Discussion

DPA is a rare malformation caused by the absence of the dorsal pancreatic bud of the endoderm (1, 35, 36). The entity was first described by Heiberg in 1911 (3) and since then until 2008 53 cases have been reported by Schnedl (4) in 2009. From 2008 to 2015, we have identified 53 cases, 7 in children and 46 in adults. The high number of cases reported – 53 – in the last 8 years merits special mention especially as in the previous 100 years (1911-2008) Schnedel only identified 53 cases. This may be due to the greater accessibility to imaging techniques.

The clinical manifestations of DPA reflect the abnormalities in the embryogenesis of the dorsal pancreas. The exocrine and endocrine tissue of the pancreas come from a common pool of multipotent progenitor cells from the foregut which give rise to the trachea, lungs, esophagus, stomach, thyroid, liver, bile ducts and the pancreas (36-38).

In humans the initial bud of the pancreas is produced on day 26 of gestation (G 26d) with the dorsal bud and the two ventral buds forming on day 30 (G 30d) (Figure 2). The left ventral bud regresses whilst the right ventral bud migrates posteriorly together with the rotation of the gut at 6-7 weeks of gestation (G 6-7w) and fuses with the dorsal bud. With the fusion of both buds, morphogenesis and differentiation begin in the acinar, ductal and endocrine cells (1, 35, 37, 38).
The ventral and dorsal buds share specific signaling pathways and transcription factors (TF) such as Hedgehog, via Notch or TF: fibroblast growth factor-10 (FGF-10), epidermal growth factor (EGF), retinoic acid, Wnt signaling and bone morphogenetic protein (BMP) produced by the surrounding mesoderm (39).

The transition from multipotent progenitor cells in an organ in which exocrine secreting units and endocrine tissue is a strictly regulated multi-sequential process. As pancreatic morphogenesis progresses, the TF are more selective for the 3 cell lines: bHLH neurogenin 3 (Ngn3) for β cells, SOX9 for ductal cells and PTF1 for acinar cells. A detailed description of pancreatic embryogenesis is beyond the scope of this study and several excellent reviews are available (1, 35-37, 40-42).

The clinical presentation of DPA varies greatly ranging from incidental detection at X-ray, surgery or autopsy through to the development of a ductal adenocarcinoma of the pancreas (4, 5). Diagnosis requires confirmation of the absence of the neck, body and tail of the pancreas and duct of Wirsung using endoscopic retrograde cholangiopancreatography (ERCP) or MRCP (Figures 3 and 4). DPA has been reported both in children and adults and may be associated with an autosomal dominant mutation of the hepatocyte nuclear factor 1B (HNF1B) gene, although in most cases it is sporadic (43-45).

Abdominal pain and diabetes are the most frequent clinical manifestations reflecting exocrine and endocrine insufficiency as most of the islands of Langerhans are located in
the tail of the pancreas (4, 19, 46, 47).

The association between cystic lesions and non-alcoholic chronic pancreatitis with pancreatic ductal adenocarcinoma (PDA) has recently been highlighted by Rittenhouse et al (5), in 3 patients who also presented dorsal pancreas agenesis. Other authors have reported an association with ampullary adenocarcinoma and intraductal papillary mucinous neoplasm (IPMN) (6, 26). There have also been reports of an increase in the size of the remnant pancreas and recurrent acute pancreatitis as a form of presentation (48).

These findings confirm the development of phenomena related to a reparative response in the residual pancreas. In experimental models of acute pancreatitis and in partial resections of the pancreas, regeneration of the pancreas has been reported in mice and children with nesidioblastosis, but never in adults (41, 48, 49). In the regenerative response of the pancreas, the presence of acinar-ductal metaplasia has been reported in which there is an upregulation of ductal markers such as CK19 and SOX9. In mouse models the development of PDA with a ductal phenotype has been confirmed. This is consistent with the clinical findings of Rittenhouse (5, 50).

Conclusion

Although DPA is a very rare malformation, given its association with non-alcoholic chronic pancreatitis and neoplasms of the residual pancreas (the ventral pancreas),
physicians should maintain an expectant attitude.
References
22. Chaudhary P, Arora MP. Agenesis of dorsal pancreas with evagination of diaphragm
<table>
<thead>
<tr>
<th>Author et al.</th>
<th>n</th>
<th>Age (y) / Sex (M/F)</th>
<th>Clinical Presentation</th>
<th>Associated diseases</th>
<th>Pancreatic head desc.</th>
<th>Cause mutation</th>
<th>Surgical procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doxey et al. (11)</td>
<td>1</td>
<td>8/M</td>
<td>Steatorrhea</td>
<td>Exocrine panc. insufficiency</td>
<td>Normal</td>
<td>Not assessed</td>
<td></td>
</tr>
<tr>
<td>Chen et al. (12)</td>
<td>3</td>
<td>4W/M: 4F/F: 2W/M</td>
<td>Neonatal DM</td>
<td>Exocrine panc. insufficiency</td>
<td>Normal</td>
<td>Not found</td>
<td></td>
</tr>
<tr>
<td>Haldorsen et al. (8)</td>
<td>5</td>
<td>15M; 38F/62F; 6F/38M</td>
<td>DM</td>
<td>Exocrine panc. dysfunction</td>
<td>Slightly atrophic</td>
<td>HNF1B</td>
<td></td>
</tr>
<tr>
<td>Pasaoglu et al. (13)</td>
<td>1</td>
<td>62/F</td>
<td>Incidental finding</td>
<td>Mild elevat. fasting glucose</td>
<td>Normal</td>
<td>Not assessed</td>
<td>Total pancreact.</td>
</tr>
<tr>
<td>Sakpal et al. (6)</td>
<td>1</td>
<td>49/M</td>
<td>Recurrent pancreat. Weight loss</td>
<td>Mucinous adenocarcinoma</td>
<td>Cystic mass 5.4 cm</td>
<td>Not assessed</td>
<td></td>
</tr>
<tr>
<td>Kin et al. (14)</td>
<td>1</td>
<td>38/M</td>
<td>Incidental finding</td>
<td>Not reported</td>
<td>Normal</td>
<td>Not assessed</td>
<td></td>
</tr>
<tr>
<td>Rittenhouse et al. (5)</td>
<td>3</td>
<td>37/F 59/F 68/F</td>
<td>DM, abdominal pain</td>
<td>Pancreatic calcification</td>
<td>3 cm adenocarcinoma</td>
<td>Not assessed</td>
<td>Total pancreact.</td>
</tr>
<tr>
<td>Low et al. (15)</td>
<td>1</td>
<td>62/F</td>
<td>Abdominal pain</td>
<td>Polysplenia, preduodenal portal vein, choledocholithiasis</td>
<td>Normal</td>
<td>Not assessed</td>
<td>Cholecystectomy, choledocholithotomy</td>
</tr>
<tr>
<td>Kapoor et al. (16)</td>
<td>1</td>
<td>55/M</td>
<td>Cholangitis, weight loss</td>
<td>Ampullary carcinoma</td>
<td>Mass in ampulla</td>
<td>Not assessed</td>
<td>Total pancreact.</td>
</tr>
<tr>
<td>Mohapatra et al. (17)</td>
<td>3</td>
<td>30/M 35/F 35/M</td>
<td>DM</td>
<td>Polysplenia, Polysplenia</td>
<td>Enlarged calcifications</td>
<td>Not assessed</td>
<td>Insulin therapy, Insulin therapy</td>
</tr>
<tr>
<td>Sebestain et al. (18)</td>
<td>1</td>
<td>27/M</td>
<td>Recurrent pancreatitis</td>
<td>-</td>
<td>Normal</td>
<td>Not assessed</td>
<td>Medical treatment</td>
</tr>
<tr>
<td>Lang et al. (19)</td>
<td>1</td>
<td>65/M</td>
<td>Abdominal pain, DM 2</td>
<td>-</td>
<td>Small calcifications</td>
<td>Not assessed</td>
<td>Medical treatment</td>
</tr>
<tr>
<td>Jeong et al. (34)</td>
<td>1</td>
<td>49/F</td>
<td>Acute pancreatitis</td>
<td>Polysplenia, preduodenal portal vein</td>
<td>Enlarged</td>
<td>Not assessed</td>
<td>Medical treatment</td>
</tr>
<tr>
<td>Dumitrascu et al. (20)</td>
<td>1</td>
<td>44/F</td>
<td>Jaundice. Abdominal pain</td>
<td>-</td>
<td>2.8 cm adenocarcinoma</td>
<td>Not assessed</td>
<td>Total pancreact.</td>
</tr>
<tr>
<td>Shimodaira et al. (21)</td>
<td>1</td>
<td>19/M</td>
<td>Glycosuria</td>
<td>-</td>
<td>Normal</td>
<td>Not assessed</td>
<td>Insulin therapy</td>
</tr>
<tr>
<td>Chaudhary et al. (22)</td>
<td>1</td>
<td>43/M</td>
<td>Acute pancreatitis</td>
<td>-</td>
<td>Pseudocyst</td>
<td>Not assessed</td>
<td>Medical therapy</td>
</tr>
<tr>
<td>Bento et al. (23)</td>
<td>1</td>
<td>59/F</td>
<td>Acute pancreatitis</td>
<td>-</td>
<td>Enlarged</td>
<td>Not assessed</td>
<td>Medical therapy</td>
</tr>
<tr>
<td>Oki et al. (24)</td>
<td>1</td>
<td>65/M</td>
<td>Back pain</td>
<td>-</td>
<td>Adenocarcinoma</td>
<td>Not assessed</td>
<td>Total pancreact.</td>
</tr>
<tr>
<td>Vijayaraghavan et al. (25)</td>
<td>6</td>
<td>15M/20M; 24F/20M; 20F/16M</td>
<td>DM (2), Abdominal pain (4)</td>
<td>-</td>
<td>Not reported</td>
<td>Normal</td>
<td>Medical treatment</td>
</tr>
<tr>
<td>Cho et al. (9)</td>
<td>11</td>
<td>72M; 79F/71F; 36F/72F/41F/63F; 53F/49M/61F</td>
<td>DM (5), Abdominal pain (7)</td>
<td>-</td>
<td>Not reported</td>
<td>Normal</td>
<td>Not reported</td>
</tr>
<tr>
<td>Sannappa et al. (26)</td>
<td>1</td>
<td>51/F</td>
<td>Jaundice. Weight loss</td>
<td>-</td>
<td>3 cm adenocarcinoma</td>
<td>Not assessed</td>
<td>Total pancreact.</td>
</tr>
<tr>
<td>Zhou et al. (27)</td>
<td>1</td>
<td>56/M</td>
<td>Incidental finding</td>
<td>-</td>
<td>Enlarged</td>
<td>Not assessed</td>
<td>Not reported</td>
</tr>
<tr>
<td>Lim et al. (28)</td>
<td>1</td>
<td>28/F</td>
<td>Incidental finding</td>
<td>-</td>
<td>Normal</td>
<td>HNF1B</td>
<td>Medical treatment</td>
</tr>
<tr>
<td>Thakur et al. (29)</td>
<td>1</td>
<td>42/M</td>
<td>Abdominal pain</td>
<td>Cholelithiasis</td>
<td>Normal</td>
<td>Not assessed</td>
<td>Cholecystectomy</td>
</tr>
<tr>
<td>Mistry et al. (7)</td>
<td>1</td>
<td>42/M</td>
<td>DM; jaundice</td>
<td>-</td>
<td>Ampullary carcinoma</td>
<td>Not assessed</td>
<td>Total pancreact.</td>
</tr>
<tr>
<td>Lai et al. (30)</td>
<td>1</td>
<td>45/F</td>
<td>Abdominal pain</td>
<td>Pancake kidney, Bicornuate uterus</td>
<td>Normal</td>
<td>Not assessed</td>
<td>Medical treatment</td>
</tr>
<tr>
<td>Kumar et al. (31)</td>
<td>1</td>
<td>35/M</td>
<td>Acute pancreatitis</td>
<td>-</td>
<td>Enlarged</td>
<td>Not assessed</td>
<td>Medical treatment</td>
</tr>
<tr>
<td>Sahoo et al. (32)</td>
<td>1</td>
<td>47/F</td>
<td>Abdominal pain. Diabetes</td>
<td>Cholelithiasis. Malrotated kidney</td>
<td>Normal</td>
<td>Not assessed</td>
<td></td>
</tr>
<tr>
<td>Guimaraes et al. (33)</td>
<td>1</td>
<td>57/F</td>
<td>Jaundice</td>
<td>Choledocholithiasis</td>
<td>Normal</td>
<td>Not assessed</td>
<td>ERCP</td>
</tr>
</tbody>
</table>
Figure 1.

Flow chart of the systematic literature search (adapted from ref. 10)
Figure 2.

30 days

36 days

32 days

Congenital short pancreas

Lack or regression of dorsal bud

Cystic dilatation

Neural pancreas bud

Duodenal bud
Figure 4.
Figure Legends

Fig 2. Organogenesis of the pancreas from ventral and dorsal endoderm buds, showing the lack of dorsal pancreas. Note the figure 1 shows the cystic formation and fibrosis in the remnant pancreas. See inset for an enlarged cutaway view of the ventral pancreas.

Fig 3. Axial images from contrast-enhanced CT showing the absence of pancreatic tissue or duct in the neck, body and tail. A 40-year old male presented with a 20-year history of chronic idiopathic cholestasis and carbohydrate intolerance. Three cystic lesions with calcifications were observed in the head of the pancreas.

Fig 4. Coronal heavily T2-weighted reconstruction MRCP image showing small cysts with calcification in the head of the pancreas. No pancreatic duct and dorsal pancreas is observed.