Liver transplantation in patients with type IIIa glycogen storage disease, cirrhosis and hepatocellular carcinoma

Authors:
Elena Iglesias Jorquera, Paula Tomás Pujante, Gema Ruiz García, Ángel Manuel Vargas Acosta, José Antonio Pons Miñano

DOI: 10.17235/reed.2018.5856/2018
Link: PubMed (Epub ahead of print)

Please cite this article as:

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Liver transplantation in patients with type IIIa glycogen storage disease, cirrhosis and hepatocellular carcinoma

Elena Iglesias-Jorquera¹, Paula Tomás-Pujante¹, Gema Ruiz-García², Ángel Manuel Vargas-Acosta¹ and José Antonio Pons-Miñano¹

Departments of ¹Gastroenterology and Hepatology, and ²Pathology. Hospital Universitario Virgen de la Arrixaca. Murcia, Spain

Correspondence: Elena Iglesias Jorquera
e-mail: elena_ij@hotmail.com

Key words: Type III glycogen storage disease. Liver cirrhosis. Hepatocellular carcinoma. Liver transplantation.

Dear Editor,

Type III glycogen storage disease (GSD-III) is an autosomal recessive disorder due to the deficiency of the glycogen debrancher enzyme. 80% of the patients have hepatic and muscular involvement (IIIa), compared to 15% with only liver involvement (IIIb). As the life expectancy improves in these patients, the possible liver complications are better understood.

Case report

We report the case of a male patient diagnosed in childhood with glycogen storage disease (GSD) by a liver biopsy performed via hypertransaminasemia. At 43 years of age, he was referred to our hepatology unit due to chronic liver disease. He suffered
from amyotrophy, global muscle weakness and obstructive hypertrophic cardiomyopathy. The muscle biopsy showed a deficiency of the glycogen debrancher enzyme, compatible with GSD-IIIa.

He progressively developed portal hypertension, with ascites, esophageal varices and gastropathy. At 48 years of age, hepatocellular carcinoma (HCC) of 3.4 cm was diagnosed by ultrasound, abdominal contrast-enhanced computed tomography and magnetic resonance imaging. The multidisciplinary committee decided to perform chemoembolization and a liver resection, confirming HCC with cirrhosis in the surgical specimen. Two years later, the HCC relapsed and the committee decided to perform a liver transplantation with prior chemoembolization. The histological examination of the explant identified GSD, with cirrhotic nodules and HCC (Fig. 1). The patient had a good evolution 18 months after the transplant, with normal liver function and stability of the muscle and cardiac involvement.

Discussion

GSD-III patients would benefit from analytical and imaging follow-up in order to detect early liver complications and therefore, may have more therapeutic options. Liver transplantation is indicated in GSD-III with decompensated cirrhosis or HCC not amenable to local or surgical treatment. This is a good therapeutic option according to current experience. There are 6 published cases of liver transplantation in adults with GSD-III and cirrhosis (1-3) (Table 1), three had HCC in the explant. We present the first liver transplantation in an adult with GSD-III and cirrhosis in Spain.

References


Table 1. Demographic and clinical characteristics of adult patients (> 15 years) with type III glycogen storage disease undergoing liver transplantation reported to date

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age</th>
<th>Glycogen storage disease type</th>
<th>Transplant indication</th>
<th>Presence of hepatocellular carcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haagsma et al.</td>
<td>Female</td>
<td>33</td>
<td>IIIb</td>
<td>Decompensate cirrhosis</td>
</tr>
<tr>
<td>Kondo et al.</td>
<td>Male</td>
<td>21</td>
<td>Illa</td>
<td>Cirrhosis</td>
</tr>
<tr>
<td>Sentner et al.</td>
<td>1 male</td>
<td>15-35</td>
<td>3 Illa</td>
<td>Cirrhosis</td>
</tr>
<tr>
<td>Iglesias et al.</td>
<td>Male</td>
<td>51</td>
<td>Illa</td>
<td>Compensated cirrhosis and hepatocellular carcinoma</td>
</tr>
</tbody>
</table>
Fig. 1. Histology of the liver explant. A. Cells with a clear, swollen cytoplasm and vacuolated / clarified nuclei are observed (hematoxylin-eosin stain, 10x). B. Moderately differentiated hepatocellular carcinoma, with a central area of hepatic parenchyma that is unstructured and compatible with cirrhosis. Cells with a clear cytoplasm cells are also observed (hematoxylin-eosin stain, 4x). Two subcentrimetic satellite nodules of hepatocellular carcinoma were found, without microvascular tumor invasion.