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ABSTRACT

Artificial intelligence (AI) systems based on machine learning have evolved in

the last few years with an increasing applicability in gastrointestinal endoscopy. Thanks

to AI, an image (input) can be transformed into a clinical decision (output). Although AI

systems have been studied mainly to improve detection (CADe) and characterization of

colorectal polyps (CADx), other indications are being currently investigated as

detection of blind spots, scope guidance, or delineation/measurement of lesions.

The objective of these review is to summarize the current evidence on

applicability of AI systems in gastrointestinal endoscopy, highlight strengths and

limitations of the technology and review regulatory and ethical aspects for its general

implementation in gastrointestinal endoscopy.
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GENERAL OVERVIEW

Over the last years, AI technologies have appeared to revolutionize

gastrointestinal endoscopy. The term “artificial intelligence” (AI) refers to the ability

of computer algorithms to mimic human cognitive decision-making process. AI

algorithms are designed to compensate human limitations and weakness during the

procedures such as fatigability, stress, or lack of experience and to help clinicians to

make decisions. Some of the potential advantages of AI in gastrointestinal endoscopy,

but not the only ones, are to short the endoscopists’ learning curve or increase their

inter-observer agreement.

AI systems designed for gastrointestinal endoscopy are based on machine

learning (ML), an automatic learning algorithm that transforms inputs (a large amount

of information from real word) into outputs (decision making process) without being

previously programmed for this function1. Deep learning (DL), a subset of ML, use

convolutional neural networks (CNNs) that are composed of several hierarchic layers

to recognize a combination of visual characteristics that tends to appear together to

differentiate one image from another. The input is fed with raw data and pass through

different interconnected layers (simulating neuronal connections) with an increasingly

level of complexity until it results as an output1. Figure 1. With DL, the program adjusts

itself and has a continuous improving as more data are included until it gets a high

level of precision.

To develop a DL model, three types of data sets are usually used: Training data

introduced for algorithm initial development, validation data that is used to make that

algorithm reach an acceptable error margin and test data set for evaluation of the

algorithm in real practice.

In gastrointestinal endoscopy, AI has a wide spectrum of possible indications

but the first systems developed are focused on computer-aided detection (CADe) and

characterization/diagnosis (CADx) of lesions (mainly colorectal polyps). There are some

other systems developed and trained to assess other aspects of the endoscopic

procedure such as: detection of blind spots, delineation and measurement of lesions,



scope guidance.

The aim of this article is to give a general and updated overview of the

applications of AI systems in gastrointestinal endoscopy based on current evidence.

APPLICATIONS IN GASTROINTESTINAL ENDOSCOPY

Esophagus

Esophageal adenocarcinoma (EAC) incidence is increasing in the last years.

Since the tumor stage at diagnosis have an important impact in the prognosis in EAC

the importance of surveillance in patients with premalignant conditions such as

Barrett´s esophagus (BE) is essential to detect early cancers and/or associated focal

dysplasia which can be treated by minimally invasive procedures.

Patients with known BE have regular endoscopic surveillance according to

guidelines2. However, there is a high level of complexity for optical diagnosis of

dysplasia in BE due to focal and subtle morphological changes requiring high-definition

scopes and expert endoscopists3. Moreover, guidelines recommend taking biopsies

according to Seattle protocol 2 resulting in most cases in an inefficient, time consuming

and low diagnostic rate procedure. For these reasons many technologies have been

developed to overcome this limitation, but until now none of them have significantly

increased the diagnostic yield of dysplasia in Barret esophagus which it’s still a problem

in a non-expert context4. To overcome these limitations studies have been designed to

assess these topics and are summarized in Table 1.

De Groof et al5 developed a DL based CAD system using 5 data sets. In stage 1

(pre-training) they used 494364 images of all intestinal segments, training data (set 2

and 3) with 1704 esophageal images of early neoplastic BE and non-dysplastic Barret

esophagus from 669 patients. System performance was assessed using data sets 4 and

5. The CAD system classified between neoplastic and non-neoplastic BE with an 89%

accuracy, 90% sensitivity and 88% specificity in dataset 4. In dataset 5 (80 patients and

images) the CAD system performance was compared to 53 general endoscopists with

88% vs 73% accuracy, 93% vs 72% sensitivity, and 83% vs 74% specificity respectively.

Swager et al 6 developed a ML algorithm for detection of dysplasia in BE based on

volumetric laser endomicroscopy features (higher VLE surface signal and lack of



layering). The algorithm was developed using 60 VLE images (30 non-dyplastic and 30

HGD/early carcinoma) from ex vivo VLE histologic correlations. The feature “layering

and signal decay statistics” showed the optimal performance, with an area under the

receiver operating characteristic curve (AUC) of .95. Corresponding sensitivity and

specificity were 90% and 93%, respectively.

Van Der Sommen et al 7in a study performed in a tertiary center used 100

white-light endoscopic images from 44 patients with Barret´s esophagus of which 21

showed histologically proven early neoplasia (60 images). They evaluate the

performance of a computer algorithm that employed texture, color filters and ML for

detection of early neoplastic lesions in Barret´s esophagus. The system identified on

per-patient analysis early neoplastic lesions with a sensitivity and specificity of 0.86

and 0.87 respectively7.

Gastric cancer and pre-neoplastic lesions

Gastric cancer is the third cause of cancer related death worldwide8. Early

detection and treatment are the best measure to improve survival in these patients.

Gastroscopy is useful for detecting gastric cancer, however most of the cancers are

diagnosed at advance stage, due to flat-depressed subtle morphology of early gastric

cancer (EGC).

Several techniques and tools such as dye based and virtual chromoendoscopy

with magnifying endoscopy have been demonstrated to improve detection of these

lesions. However, despite of these advantages the diagnostic accuracy of EGC in non-

expert setting is still low9.

AI application in gastric cancer has been evaluated in different scenarios as to

identify blind spots during the procedure and improving endoscopy quality10, to

improve detection of EGC11–13, to delineate lesions and predict deep submucosal

invasion14,15, to recognize pre-neoplastic lesions such as atrophy or intestinal

metaplasia and to identify H. pylori infection based on some endoscopic changes such

as mucosal redness, swelling and nodular change16–18.

Regarding endoscopy quality Wu et al10 developed ENDOANGEL, a CNN and

deep reinforcement algorithm, and compared with endoscopists in a prospective real



time in vivo RCT with 1050 patients. ENDOANGEL group had fewer blind spots (mean

5.38 [SD] 4.32 vs. 9.82 [SD 4.98]; p<0.001) and longer inspection time (5.40 [SD 3.82]

vs. 4.38 [SD 3.91] minutes; P<0.001) compared to white-light endoscopy with an

accuracy of nearly 85% and sensitivity of 100% for detecting gastric cancers10. Hu et

al13 tested an algorithm developed for detection of EGC with NBI magnifying

endoscopy. They compared the performance of AI system versus endoscopists

evaluating magnifying endoscopy images in a training and validation cohort. There was

similar performance between senior endoscopists and the AI (accuracy: .770 vs .755, P

Z .355; sensitivity: .792 vs .767, P Z .183; specificity: .745 vs .742, P Z .931) but better

than the junior endoscopists (accuracy: .770 vs .728, P < .05). Ikenoyama et al11

developed a CNN system using 13,584 endoscopic images from 2639 patients and

subsequently they compare and independent data set of 2940 images from 140 cases

for diagnosis of EGC with 67 endoscopists. The developed CNN system detected more

early gastric cancer in a shorter time than endoscopists. Sensitivity was significantly

higher for the CNN (by 26.5%, 95% CI 14.9–32.5%), and the specificity and PPV were

significantly higher for the endoscopists (specificity: by 9.9%, 95% CI 8.7–11.1%; PPV:

by 20.2%, 95% CI 16.6–23.8%). Their NPV were comparable (96.5% vs. 94.9%, by 1.6%,

95% CI 1.0–2.1%).

For diagnosis of H. pylori infection Nakashima et al16 developed a DL based CAD

system based on Linked Color Imaging and white light endoscopy images (6639 WLE

and 6248 LCI images from 395 subjects) to classify H. pylori status into three

categories: uninfected, currently infected, and post-eradication. The diagnostic

accuracy was higher for LCI-CAD system (84.2% for uninfected, 82.5% for currently

infected and 79% for post-eradication) than with WLE-CAD system (75% for

uninfected, 77.5% for currently infected and 74% for post-eradication). Zheng et al17

retrospectively evaluated a CCN system based on endoscopic white light images of

1,959 patients, 1,507 (847 with H. pylori infection) were assigned to the derivation

cohort, and 452 (including 310 (69%) with H. pylori infection) were assigned to the

validation cohort. The area under the curve for a single gastric image was 0.93 (95%

[CI] 0.92-0.94) with sensitivity, specificity, and accuracy of 81.4% (95% CI

79.8%-82.9%), 90.1% (95% CI 88.4%-91.7%), and 84.5% (95% CI 83.3%-85.7%),



respectively. Area under the curve for multiple gastric images (8.3 ± 3.3) per patient

was 0.97 (95% CI 0.96-0.99) with sensitivity, specificity, and accuracy of 91.6% (95% CI

88.0%-94.4%), 98.6% (95% CI 95.0%-99.8%), and 93.8% (95% CI 91.2%-95.8%),

respectively, using an optimal cutoff value of 0.4.

Other possible indications of AI in upper gastrointestinal endoscopy currently

investigated are differentiation between the two most common subepithelial lesions:

GIST and leiomyomas during endoscopic ultrasonography. The AI systems was trained

using 10439 EUS images from 752 patients with GIST or leiomyomas. AI was then

evaluated through retrospective and prospective tests. In the prospective evaluation

132 patients (36 GISTs, 44 leiomyomas and 52 other types of sub-epithelial lesions)

were histologically diagnosed among 508 subjects. The total accuracy of endoscopists

increased from 69.7% (95% confidence interval [CI] 61.4%–76.9%) to 78.8% (95%CI

71.0%–84.9%; P=0.01).19

The main studies that analyze the impact of AI in these settings are

summarized in table 2.

Small bowel pathology

Video capsule endoscopy is a widely endoscopic procedure for diagnosis of

small bowel pathology. Thousands of images are obtained in a typical small bowel

study, leading to a no negligible percentage of miss rate of lesions. The main causes of

this miss rate are related to human attention and the fact that some lesions appeared

only in a few frames makes a real possibility of overlooking lesions during the reading.

To overcome these limitations AI systems have been studied in the following scenarios:

detection GI ulcers and bleeding lesions which represents one of the main indications

of video capsule, identification of protruding lesions/tumors that are more difficult to

detect during CE because they usually are isolated lesions and with a color similar to

mucosa in comparison with vascular lesions and/or ulcers and optimal localization and

size of capsule lesion(s)20 to determine the best therapeutic approach and evaluating

endoscopic features of celiac disease21

Mascarenhas M. et al also develop a AI based on CCN algorithm with VCE 18625

images (2830 showing protruding lesions and 15795 normal mucosa) to detect



protruding lesions in small bowel during VCE. Training and validation datasets were

built in a 80%/20% distribution. The accuracy of the system was 92.5% with a

sensitivity of 93.8 and specificity of 96.5%. The system analyzed the images with a rate

of 70 frames per second.

The main studies assessing these scenarios are summarized in Table 3

Inflammatory bowel disease

There are many endoscopic indexes to assess and grade the severity of disease

activity in IBD. However, these scores may have high intra and inter-observer

heterogeneity1919. AI systems could improve these imprecisions leading to increase in

accuracy for assessing the endoscopic severity. There are some studies evaluating the

performance of AI in these scenarios showing promising results, nevertheless, they are

retrospective. This reflects the difficulty for assessing good high-quality and

representative images with adequate correlation with histology in this pathology23–25.

Another potential scenario in IBD patients that AI system must be evaluated is

on the detection of Colitis associated neoplasia due to the difficulties in detection and

demarcation of these lesions.

Colorectal lesions

Colorectal cancer (CRC) is the third most common cancer worldwide and the

second leading cause of cancer-related death66. Colonoscopy has already

demonstrated to reduce colon cancer incidence and mortality. However, colonoscopy

it is not a perfect procedure and post-colonoscopy CRC is still a major issue26.To

overcome these limitations several strategies have been developed for improving

quality of bowel preparation and improving adenoma detection rate. Some of these

strategies include dye based or virtual chromoendoscopy, distal attachments, although

previous studies have failed in demonstrate a substantial benefit in detection of

lesions in average-risk populations27.

Polyp detection (CADe) is the most studied field of applications of AI systems in

gastrointestinal endoscopy with several high-quality studies assessing the usefulness of

AI systems already published. In a recent meta-analysis, Hassan et al. including 4350



patients from 5 randomized controlled trials demonstrate a significant increase in

adenoma detection rate in the CADe group relative risk 1.44 95% [CI], 1.27-1.62 with

moderate heterogeneity28. Similar results were found in another meta-analysis made

by Barua and colleagues29 with an increase in ADR in CADe group RR 1.48. However,

there was no significant differences in detection of advance adenomas, probably due

to lack of statistical power to demonstrate these differences. Thus, studies addressing

this subtype of lesions are needed. In view of the increasingly evidence, the European

Society of Gastrointestinal Endoscopy in its advance imaging for detection and

differentiation of colorectal neoplasia have dedicated a recommendation regarding the

role of AI system in detection of characterization of lesions suggesting the possible

incorporation of CAD systems in these setting if acceptable evidence is demonstrated

in in vivo studies30.

Other possible methods to improve polyp detection besides deep learning

methods are also being evaluated. Fernandez-Esparrach et al31 developed a model

that defines with more accuracy polyp boundaries and integrated and highlight the

lesions into energy maps that represents the likelihood of the presence of a polyp. The

system (WM-DOVA). In 24 videos containing polyps the mean of maximum values on

the energy maps were higher in frames where polyps were presents than without

(p<0.001). The performance in high-quality frames were high (AUC=0.79 [95%CI

0.70-0.87] VS. 0.75 [95%CI 0.66-0.83]. Sánchez-Montes 32et al developed a CAD system

for in-vivo characterization of colorectal polyps using WLE images. The system

development was inspired in pit patterns of Kudo classification and recognizes surface

textural patterns (textons) which can help to detect dysplasia. Images of 225 polyps

(142 dysplastic and 83 non-dysplastic). The CAD system correctly classified 205 polyps

91.1% 92.3% dysplastic and 89.2% non-dysplastic. There were no significant

differences between CAD and endoscopists performance.

Accurate in vivo polyp characterization (CADx) is crucial to differentiate

between neoplastic or non-neoplastic lesions enabling the implementation of “resect

and discard” and “diagnose and leave in situ” strategies proposed by The American

Society for Gastrointestinal Endoscopy PIVI 3 (Preservation and Incorporation of



Valuable Endoscopic Innovations) in order to avoid unnecessary polypectomies and

histopathology analysis with a subsequent improve in cost-effectiveness of the

procedure. However, these criteria could be difficult to achieve in clinical practice. To

simplify these inconvenient and made a more realistic optical diagnosis competence

standards SODA criteria were recent developed through an expert Delphi consensus

for implementation of these strategies in diminutive colorectal polyps33. In order to

implement the “leave in situ” strategy is acceptable if the endoscopist achieve at least

90% of sensitivity and 80% of specificity and for “resect and discard” strategy at least

80% sensitivity and specificity in high confidence characterization. Based on this, AI

systems developed and trained for optical diagnosis of colonic lesions should provide

similar values in order to achieve sufficient agreement in assignment of post-

polypectomy surveillance intervals when compared to decisions based on pathology

according to guidelines.

For characterization of polyps there is a retrospective validation study made by

Zachariah and colleagues evaluating a CCN system trained with over 6000 colorectal

polyps images that demonstrated to achieve PIVI thresholds34. Clinical in-vivo studies

are expected to confirm the efficacy of CADx systems in optical diagnosis of colorectal

lesions. Studies regarding detection and characterization of colorectal lesions are

summarized in Table 4.

Other applications of AI in colonoscopy could be the evaluation of colorectal

lesions include Blind spots and guidance to scope insertion, polyp size measurement,

optical diagnosis for prediction of invasion and for making prediction models of

lymphatic invasion in patients with T1 colorectal cancers35.

LIMITATIONS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES AND IMPLEMENTATION

ISSUES

The applicability and external validation of the algorithms depends on the

quality of the training datasets, that is an aspect that clinicians must be careful when

evaluating AI technologies.



Training data set could lead to selection bias and overfitting. Selection bias

occurs when the data set used for training the model is not large enough to represent

the real clinical scenario. “Overfitting” happens when too many details are introduced

in the deep learning algorithm making too much heterogeneity and imprecision in

categorizing the data. Selection bias and overfitting errors could arise mistakes in

clinical practice.

Also, despite the potential high accuracy that AI systems could reach, deep

learning models could be inscrutable for the clinicians turn them into black boxes and

making impossible to infer/discuss causal relationships in decision making in clinical

practice36.

There is also concern about the effects of general implementation of artificial

intelligence systems on learning curve of the endoscopist with the possibility of

deskilling and on the influence of the device on endoscopist attention during the

procedure and possible increasing of procedural time.

Another important aspect that needs to be addressed is potential

“overdiagnosis” of lesions in context of screening programs that could led to

overtreatment of lesions with negligible potential to develop cancer. This could have

implications (patient anxiety, prone to complications related to the procedure) in

patients and health-care system (higher burden and health-care system costs).

ETHICAL ASPECTS, REGULATIONS AND IMPLEMENTATION

AI technologies are regulated in U.S. Food and Drug Administration consider AI

tools for clinical support as medical devices. Such regulatory enable the FDA and

manufacturers to evaluate and monitor a software product from its premarket

development to post-commercialization performance.



To regulate the report of clinical trials evaluating any AI component the

CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence) and

SPIRIT AI (Standard Protocol Items: Recommendations for Interventional Trials-

Artificial Intelligence) report guidelines were designed in parallel through an

international consensus and literature review of expert through a Delphi survey.

CONSORT-AI its adapted from CONSORT 2010 guidelines adding specific issues

regarding implementation and evaluation of AI interventions37,38.

Ethical aspects regarding informed consent and reliable of the diagnosis and

miss or incorrect diagnosis and responsibilities in decisions making process depends on

the endoscopists.

As AI technologies are validated and introduced in clinical practice, cost-

effective studies to assess the real impact in costs of AI in gastrointestinal endoscopy

daily practice are going to be needed.

CONCLUSION

Artificial intelligence systems are being evaluated in a wide spectrum of

indications in gastrointestinal endoscopy. Different algorithms, training methods,

aided technologies and indications for diagnosis, prognosis and management are

addressed with promising outcomes that could led to a substantial change of

gastrointestinal endoscopy daily practice.

Although there are many aspects that need to be addressed in order to

standardize the use of these technologies and more prospective, randomized in-vivo

studies are needed to confirm the results in some indications, we expect than in the

next few years AI will be a reality as a valuable tool for making decisions and will work

side to side with physicians rather than replace them in gastrointestinal endoscopy

practice.
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Table 1. Artificial intelligence technologies applied to endoscopy for esophageal lesions.



Table 2. Artificial Intelligence applied to endoscopy for gastric pathology.

Author(s) Lesion Study design Type of artificial
intelligence

Data sets Results
AUC

Se/Sp/Accuracy
Esophagus
De Groof et al.
Gastroenterology
20205

Early neoplasia in BE Validation study.
Retrospective

Deep learning
CAD system
GastroNet

5 data sets.
Pre-training 494,364
endoscopic images
from all intestinal
segments. Training
1704 esophageal WLE
HD images of early-
stage neoplasia in BE
and non-dysplastic
BE.

Classify between
neoplasms and
non-dysplastic BE
from 80 patients
images: 89%
Accuracy, Se 90%,
Sp 88%88%

Swager et al
GIE 20176

Dysplasia in BE with
the use of Volumetric
laser endomicroscopy
(VLE)

Retrospective Computer aided
algorithm to
detect dysplasia
on ex vivo images

60 VLE images from
ex vivo VLE-histology
correlations,
obtained from BE
patients (30 non-
dysplastic BE and 30
high-grade
dysplasia/early
adenocarcinoma).

Layer: 83%-93%
Signal intensity
distribution:
83%-87%

Van de Sommen
F.et al
Endoscopy 20167

Early neoplastic lesions
in Barrets esophagus

Validation study Machine learning,
algorithm, which
employed specific
texture, color
filters.

100 images from 44
patients with
Barrett’s esophagus,
a computer.

Per-image analysis
with a Se and Sp of
0.83.
At patient level, Se
and Sp of 0.86 and
0.87, respectively.



Stomach
Author(s) Evaluated indication Study design Type of

artificial
intelligence

Training
process/dataset

Results
AUC

Se/Sp/Accuracy
Wu L. t al
Endoscopy
202110

AI (ENDOANGEL) for
endoscopy quality and
detection of early gastric
cancer.

RCT DCNN and
deep
reinforcement
learning.

1050 patients
were
randomized. 498
ENDOANGEL and
504 control
group.

ENDOANGEl group had
fewer blinded spots and
longer inspection time.
Accuracy 84.7%, Se 100%,
and Sp of 84.3% for
detecting gastric cancer.

Zhang Y., et al
Dig Liv Dis 2020.
39

Improve the diagnostic of
Chronic atrophic gastritis.

Retrospective CNN system 5470 images of
antrum from
1699 patients of
which 3042 had
atrophic gastritis.

Accuracy 94.2%
Se: 94.5%, Sp: 94%

Ikenoyama Y.
Digestive
Endoscopy
202111

To compare diagnostic ability
between CNN and
endoscopist for detection of
early gastric cancer.

Retrospective
and test
dataset

CNN system 13,584 WLE
without
magnification
endoscopic
images from 2639
of gastric cancer.
test dataset
(2940 images
from 140 cases).

Se, Sp, PPV and NPV for
the CNN were 58.4%,
87.3%, 26.0%, and 96.5%,
respectively.
For the endoscopists were
31.9%, 97.2%, 46.2%, and
94.9%, respectively.

Li L., et al.
Gastric Cancer
2020.12

Detection of EGC with
magnifying NBI.

Retrospective CNN system 386 images with
NBI and
magnification of
non-cancerous
lesions and 1702
images of early
gastric cancer for
training. Then
341 images (171
non-cancerous
and 170 EGC) to
validate and
compare with
endoscopists

Se, Sp, and accuracy of
CNN system were 91.18%,
90.64%, and 90.91%,
respectively

Yoon HJ et al
J Clin Med
201919

Invasion depth in early
gastric cancer.

Retrospective CNN system
based on a
visual
geometry
group-16
model

11539 WLE
endoscopic
images (896 T1a-
EGC, 809 T1b-
EGC, and 9834
non-EGC).

AUC for EGC detection
and depth prediction
0.981 and 0.851,
respectively

Zhu Y. et al.
GIE 201915

Invasion depth in gastric
cancer

Retrospective CNN system
developed
through
transfer
learning
leveraging a
state-of-the-
art pretrained
CNN
architecture,
ResNet50

790 images as
development and
203 test dataset.

AUC: 0.94
Se: 46.5%
Sp: 95.5%
Accuracy: 89%

Hu H. et al
GIE 202113

Detection of EGC with NBI
with magnifying endoscopy.

Cohort  VGG-19
architecture
(Visual
Geometry
Group [VGG],
Oxford
University,
Oxford, UK). 

1777 Magnifying-
NBI images from
295 cases.
training cohort (n
= 170), an
internal test
cohort (n = 73),
and an external
test cohort (n =
52).

Similar predictive
performance as the
senior endoscopists (Acu:
0.77 vs 0.755, P = .355;
Se: 0.792 vs 0.767, P =
.183; Sp: 0.745 vs .0742, P
= .931) but better than
the junior endoscopists
(accuracy: .770 vs .728, P
< .05). 

Namikawa K. et
al

Endoscopy
2020.40

Differentiation between
gastric cancer and ulcers

Retrospective
validation
study

Previously
developed
CCN system

Add new data set
of 4453 gastric
ulcer images from
1172 lesions
added to a
previous system
been trained
using 13 584
gastric cancer and
373 gastric ulcer
images.

Classifying gastric cancer
at lesion level Se 99%, Sp
93.3% and PPV 92.5%.

overall accuracies of the
O- and A-CNN for
classifying gastric cancers
and gastric ulcers were
45.9% (gastric cancers
100%, gastric ulcers 0.8 %)
and 95.9% (gastric cancers
99.0%, gastric ulcers 93.3
%), respectively

Yang X. et al
Endoscopy
202119

Differentiation between
GIST tumors and
leiomyomas using
endoscopic ultrasonography.

Retrospective. CNN
ResNET-50

10439 EUS
images from 752
sub epithelial
tumors.

The accuracy of
endosonographers in
diagnosing the 80
participants with GISTs or
GILs increased from 73.8%
to 88.8% (P=0.01)

Nakashima H. et
al
Gastric Cancer
202016

H.pylori infection in three
categories: uninfected,
currently infected and post-
erradication.

Retrospective
validation and
training data
set

DCNN 395 subjects
contained 6639
WLI and 6248 LCI
images

Accuracy of the LCI-CAD
system was 84.2% for
uninfected, 82.5% for
currently infected, and
79.2% for post-
eradication status

Zheng et al 2019
Clinical and
translational
gastroenterology
201917

Diagnosis of H. pylori
infection

Retrospective
pilot study

CNN system
(REsNet-50)

1959 patients.
1507 of which
847 had H.
infection for
derivation cohort
and 452 of which
310 had H. pylori
infection for
validation.

AUC for a single gastric
image was 0.93 with Se,
Sp, and accuracy of
81.4%, 90.1%, and 84.5%
respectively.

Itoh T. et al
Endoscopy
201818

Diagnosis of H. pylori
infection

Retrospective
training data
sets

CNN system 179 images from
139 patients for
validation set.  Of
the 179 images,
149 were used as
training images,
and the
remaining 30 (15
from HP-negative
patients and 15
from HP-positive
patients) were set
aside to be used
as test images. 

Se and Sp of the CNN for
the detection of HP
infection were 86.7 % and
86.7 %, respectively, and
the AUC was 0.956.



AI: Artificial intelligence, AUC: area under the receiver operating characteristic curve, CAD:
Computer aided diagnosis, CNN: Deep convolutional neural network, EGC: Early gastric cancer.
NBI: Narrow-band imaging, NPV: Negative predictive value, PPV: Positive predictive value,
RCT: randomized controlled trial, RR: relative risk, Se: sensitivity, Sp: specificity, VCE: Video-
capsule endoscopy

Table 3. Artificial intelligence technologies applied to small bowel pathology.

Small bowel pathology
Author(s) Lesion Study design Type of

artificial
intelligence

Training
process

Results
AUC

Se/Sp/Accuracy
Soffer S. et al
Gastrointestinal
Endoscopy
202041

Deep learning
implementation in
wireless capsule
endoscopy. included
detection of ulcers,
polyps, celiac disease,
bleeding, and hookworm.

Systematic review
and meta-analysis

- 19
retrospective
studies using
deep learning
technologies.

Accuracy was
above 90% for
most studies.
Pooled Se and Sp
for ulcer
detection 0.95
and 0.94
respectively.

Pooled Se and Sp
for bleeding or
bleeding source
were 0.98 and
0.99 respectively.

Mascarenhas M.
et al
Rev Esp Enferm
Dig. 202142

Protruding lesions in
small bowel during video
capsule endoscopy

Tested
retrospectively

CNN based
system

18625 VCE
images (2830
showing
protruding
lesions and
15795 normal
mucosa)
Training and
validation
datasets were
built in a
80%/20%
distribution

Accuracy 92.5%
with a sensitivity
of 93.8 and
specificity of
96.5%.

The system
analyzed the
image
with a rate of 70
frames per
second.

Saito H. et al.
GIE 2020.42

Protruding lesions
(polyps and tumors

Tested
retrospectively

CNN based
system

30584 images
of 292
patients

AUC: 0.911
Se 90.7%, 7Sp
99.8%

Mohan B.P. et al
GIE 202143

Diagnosis of
gastrointestinal ulcers
and/or hemorrhage

Systematic review
and meta-analysis

- 9
retrospectives
studies
evaluating
performance
of CAD
systems using
wireless
capsule
endoscopy

Accuracy 95%
Se 95.5%, Sp s
95.8%, PPV
95.8%, and NPV
96.8%. I2%
heterogeneity
was negligible
except for the
pooled positive
predictive value.



Table 4. Performance of Artificial Intelligence technologies based on deep learning
evaluating colonic lesions.



Colon

Author(s) Lesion Study design Type of
artificial
intelligence

Training
process

Results
AUC

Se/Sp/Accuracy
Repici A. et al
Gastroenterology
2020.44

ADR Multicenter
RCT comparing
HD-WLE vs.
CADe (Gi
Genius,
Medtronic)
aided
colonoscopy

CCN trained
and validated
using 2684
videos of
histologically
confirmed
polyps from
840 patients

685 subjects Increase in ADR in CAD group
54.8% vs. 40.4% RR 1.30
APC higher in CADe group
(mean, 1.07 ±1.54) than in the
control group (mean 0.71 ± 1.20)
(incidence rate ratio, 1.46; 95%
CI, 1.15–1.86)

Su J. et al
Gastrointestinal
endoscopy 202045

ADR RCT 5 DCCN
automatically
time the
withdrawal
phase,
supervise
stability,
evaluate
bowel
preparation,
and detect
colorectal
polyps in real
time.

659 patients DCCN significantly increased the
ADR (0.289 vs 0.165, P < .001)
and the mean number of
adenomas per procedure (0.367
vs 0.178, P < .001)

Gong D.Wu L.
Lancet
Gastroenterol
Hepatol 202046

ENDOANGEL to
monitor
withdrawal and
blind spots.

RCT comparing
ADR between
unassisted
colonoscopy
and assisted
with
ENDOANGEL
system.

DCCN using
three
datasets
came from
stored data
for more
than 5000
patients

704 patients In the intention-to-treat, ADR
was greater in the
ENDOANGEL group 16% vs 8%
[OR] 2·30, 95%; p=0·001).

per-protocol analysis, findings
were similar, 17% vs 8%
assigned control having one or
more adenomas detected (OR
2·18, 95% CI 1·31–3·62;
p=0·0026).

Hassan C.
GIE 202128

Performance of
CADe systems
pooled ADR of 5
RCT.

Systematic
review and
meta-analysis

- 4354
patients

Pooled ADR was significantly
higher in the CADe group than in
the control group 36.6% vs
25.2%; RR, 1.44; 95% [CI],
1.27-1.62; P < .01; I2 Z 42%).

Barua I et al
Endoscopy 202129

To compare AI
with standard
colonoscopy for
detection of
polyps, adenomas
and colorectal
cancer.

Systematic
review and
Meta-analysis

- 3175
patients from
5 RCT

Increase in ADR (29.6% vs.19.3
%) in CAD group with high
certainty.
PDR (45.4 % vs. 30.6%); RR 1.48
with high certainty.
There was no difference in
detection of advanced



adenomas.





There was no difference in
detection of advanced
adenomas.

Aziz M. et al
J Gastroenterol
Hepatol 202047

To assess impact
of DCNN-based AI-
assisted
colonoscopy in
improving the ADR
and PDR

Systematic
review and
Meta-analysis

- 3 studies
with 2815
patients

AI colonoscopy resulted in
significantly improved ADR
(32.9% vs 20.8%, RR: 1.58, 95%
CI 1.39–1.80, P = < 0.001) and
PDR (43.0% vs 27.8%, RR: 1.55,
95% CI 1.39–1.72, P = < 0.001)
compared with standard
colonoscopy

Lui T.K.L. et al.
Gastrointestinal
Endoscopy 202048

Accuracy of AI on
histology
prediction and
detection of
polyps.

Systematic
review and
meta-analysis.

- 7680 images
of colorectal
polyps with
NBI and
without
magnification
from 18
studies

For characterization of
diminutive polyps with non-
magnifying NBI, the pooled NPV
was 95.1%.
For polyp detection, the pooled
AUC was 0.90 with a Se of 95.0
and a Sp of 88.0%.

Zachariah R. et al.
Am J Gastroenterol
202034

Prediction of
polyp histology
and achieve PIVI
thresholds.

Retrospective
validation
study.

CNN-based
optical
pathology
model using
TensorFlow
and pre-
trained on
ImageNet

6,223 images
of colorectal
polyps
underwent 5-
fold cross-
training
(80%) and
validation
(20%)

NPV for adenomas was 97%
among diminutive recto-sigmoid
polyps. Results were
independent of use of NBI or
white light. Surveillance interval
concordance was 93%.

Byrne M.F. et al
Gut 201949

Optical diagnosis
assessment of
video images of
colorectal polyps

Retrospective
training study.

CNN system 125 videos of
diminutive
polyps

No sufficient confidence to
predict histology of 19 (15%)
polyps in the test set. For the
remaining 106 polyps, the
accuracy was 94%, Se 98%, Sp
was 83% NPV 97% and PPV of
90%.

Stidham R.W. et al.
JAMA Netw Open
201924

Endoscopic
disease severity in
ulcerative colitis.

Retrospective CNN system 6514 images
from 3082
patients

AUC of 0.966; a PPV of 0.87
with a Se of 83.0% and Sp of
96.0% and NPV of 0.94 for
distinguishing endoscopic
remission from moderate to
severe disease.

Table 4. Performance of Artificial Intelligence technologies based on deep learning
evaluating colonic lesions.

ADR: adenoma detection rate, AI: Artificial intelligence, AUC: area under the receiver
operating characteristic curve, CAD: Computer aided diagnosis, CNN: Deep convolutional
neural network, NBI: Narrow-band imaging, NPV: Negative predictive value, PIVI: Preservation
and Incorporation of Valuable Endoscopic Innovations, PPV: Positive predictive value, RCT:
randomized controlled trial, RR: relative risk, Se: sensitivity, Sp: specificity, VCE: Video-capsule
endoscopy.
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Figure 1. Deep convolutional network is composed of a number of interconnected

hierarchic layers that results in an output emulating the neuronal connections.
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Figure 2. Main applications of Artificial Intelligence systems in Gastrointestinal

Endoscopy.


