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Polycystic liver diseases (PLDs) comprise a heterogeneous group of congenital genetic

disorders that mainly affect bile duct epithelial cells, known as cholangiocytes. Patients

with PLD usually present with bile duct dilatation and/or progressively develop

intrahepatic, fluid-filled biliary cysts (more than 10), which is the main cause of

morbidity (1). Cysts may arise isolated in the liver in patients with autosomal dominant

PLD (ADPLD), affecting approximately 1 per 100,000 inhabitants (2). On the other

hand, liver cystogenesis may more frequently develop in parallel with renal cysts in

patients with autosomal dominant or autosomal recessive polycystic kidney disease

(ADPKD, around 68:100,000 inhabitants, and autosomal recessive polycystic kidney

disease (ARPKD), around 1:20,000 inhabitants, respectively) (3,4). PLD clinical

presentation is very heterogeneous and a remarkable variation in symptomatology

may be observed (1). Considering the reduced number and size of liver cysts observed

in up to 80 % of patients, a remarkable proportion of patients remain asymptomatic

for quite a long period of time. Still, among patients with obvious clinical

manifestations, most common symptoms include abdominal discomfort, local pressure

with back pain, gastro-esophageal reflux, dyspnea, and early satiety, mostly as a result

of massive cyst growth and hepatomegaly, in parallel with cyst-related complications

such as cyst hemorrhage, infection and/or rupture (5). Current therapeutic approaches

are usually applied to patients with remarkable symptomatology aiming to treat

symptomatic cysts. Percutaneous (i.e., aspiration sclerotherapy) and/or surgical (i.e.,

hepatic cyst fenestration, liver resection) procedures, in parallel with chronic



somatostatin analogue administration (octreotide, pasireotide, lanreotide), are the

most common therapeutic approaches used for patients with PLD but exhibit short-

term and modest benefits, hence liver transplantation remains the only potentially

curative option (6). Therefore, novel therapeutic strategies based on a deeper

understanding of the molecular mechanisms driving cystogenesis are required.

PLD develops as a result of germline mutations in distinct genes. Up to now, mutations

in 12 different genes have been related to the development of PLDs. Specifically,

mutations in seven of these genes (i.e., PRKCSH, SEC63, LRP5, GANAB, ALG8, SEC61B,

and PKHD1) have been associated with ADPLD. Besides, ADPKD has been associated

with mutations in six genes (i.e., PKD1, PKD2, GANAB, LRP5, DNAJB11 and ALG9), while

mutations in PKHD1 and DZIP1L have been related to the development of ARPKD.

Although several genes were already associated with the development of PLDs, the full

genetic landscape is not yet completely understood, particularly in ADPLD, since the

causative genes are not identified in up to 50 % of cases (7).

PLD-related cystogenesis is defined by several functional alterations in cholangiocytes,

which are directly mediated by increased levels of cyclic adenosine monophosphate

(AMP): cAMP, and decreased intracellular calcium (iCa2+) levels. Events responsible for

the pathobiology of PLDs include cholangiocyte hyperproliferation and hypersecretion,

elevated matrix metalloproteolytic activity, changes in microRNAs expression patterns,

autophagy and morpho-functional alterations of the primary cilium (8). In the past

years, novel mechanisms of pathogenesis were added to this list, allowing the

identification of novel therapeutic targets for PLDs (Fig. 1). In this regard, since 75 % of

the identified PLD-related genes are known to encode for endoplasmic reticulum (ER)-

related proteins, involved in Ca2+ homeostasis and in the post-translational

modification of proteins, increased ER stress was hypothesized to contribute to disease

pathogenesis. In line with this, the expression levels of unfolded protein response

(UPR) sensors (i.e., ATF6, IRE1α and PERK) and their downstream effectors (i.e., GRP78,

XBP1 and CHOP), which are usually increased in response to ER stress, were shown to

be upregulated in liver tissue from patients with PLD and in human and rat cystic

cholangiocytes in culture (9). Proteomic analysis of cystic cholangiocytes in culture in

comparison to normal human cholangiocytes revealed alterations in protein synthesis,



folding, trafficking and degradation. Additionally, an enlargement of ER lumen was

observed in cystic cholangiocytes in comparison to healthy cholangiocytes, in parallel

with proteasome hyperactivation, all these features being indicative of aberrant

proteostasis, accumulation of unfolded/misfolded proteins, and ER stress (9). Of note,

chronic treatment of PCK rats (animal model of PLD) with the chemical chaperone 4-

phenylbutyric acid (4-PBA), known to reduce ER stress, diminished total liver weight as

well as liver and cystic volumes, when compared to control rats, by normalizing

aberrant proteostasis and impacting on cholangiocyte hyperproliferation, apoptosis,

and vascular endothelial growth factor (VEGF) secretion (9). Overall, restoration of

aberrant proteostasis and decreasing ER stress with 4-PBA was proposed as a novel

therapeutic strategy to treat hepatic cystogenesis that now deserves future clinical

evaluation.

As a consequence of sustained ER stress, alterations in protein dynamics in cystic

cholangiocytes may appear. Post-translational modifications (PTMs) are critical for

proper protein function, and disturbances in PTMs were related to aberrant

proteostasis in cystic cholangiocytes (10,11). Specifically, several players involved in

SUMOylation (i.e., UBE2I, SAE1, UBA2 and SUMO1) and NEDDylation (i.e., NAE1, UBA3

and NEDD8) were found to be upregulated in the liver tissue from patients and rats

with PLD, when compared to healthy livers, this being associated with increased

hepatic cystogenesis (10,11). Importantly, targeting the SUMOylation pathway with S-

adenosylmethionine (SAMe), a natural inhibitor of UBC9, restored hyperSUMOylation

levels in cystic cholangiocytes. Moreover, SAMe administration to human cystic

cholangiocytes reduced proteosome hyperactivity and proliferation, while inducing

stress-related apoptosis, attenuating the growth of 3D cystic cholangioids in vitro.

Outstandingly, chronic treatment of PCK rats with SAMe decreased hepatic

cystogenesis and reduced liver fibrosis, hence further clinical evaluation in patients is

warranted in the next years (10). Similarly, pevonedistat, a first-in-class inhibitor of the

NEDDylation pathway, decreased proliferation and induced apoptosis in human cystic

cholangiocytes in culture (11). This compound deserves now pre-clinical assessment in

animal models of PLD.



Since ER stress and altered proteostasis may increase autophagy, cystic cholangiocytes

were also shown to have alterations in the autophagic flux, presenting more

autophagosomes, lysosomes and autolysosomes in different experimental in vitro and

in vivo settings (12). Furthermore, the observed upregulation of autophagy-related

proteins, including ATG5, beclin 1, ATG7 and LC3B, in cystic cholangiocytes suggested

autophagy as a direct promoter of hepatic cystogenesis (12). In this sense, targeting

the autophagic flux with bafilomycin A1 or hydroxychloroquine reduced the

proliferation of cystic cholangiocytes in vitro and the growth of hepatic cysts in 3D

cultures, ultimately decreasing hepatic cystogenesis in PCK rats (12). Thus, autophagy

emerges as a potential therapeutic target for PLD treatment that deserves attention in

the future.

Structural and/or functional abnormalities (elongation, shortening or absence) in the

cholangiocyte primary cilium are common alterations in cystic cholangiocytes (13,14).

In fact, histone deacetylase 6 (HDAC6) overexpression was reported in human and rat

cystic cholangiocytes, inducing α-tubulin deacetylation and consequent ciliary

disassembly (15). Therefore, HDAC6 arose as novel potential therapeutic target in PLD.

Recently, a new single molecule-based strategy (16) was used to combine selective

HDAC6 inhibitors with the endogenous, hepatoprotective bile acid (BA)

ursodeoxycholic acid (UDCA), which was shown to inhibit hepatic cystogenesis in

experimental models (17) and in patients with advanced PLD (18). In this regard, a

family of UDCA synthetic conjugates with selective HDAC6 inhibitory activity (UDCA-

HDAC6is) were prepared and tested in experimental models of PLD (16). Particularly,

chronic administration of UDCA-HDAC6i #1 to PCK rats effectively reduced PLD-related

hepatomegaly and nephromegaly, halting liver cystogenesis and increasing the hepatic

levels of free UDCA. Additionally, HDAC6 activity in treated rats was confirmed by

observing a significant increase in the levels of acetylated α-tubulin and in the length

of the primary cilium, when compared to untreated rats. In vitro experiments showed

that UDCA-HDAC6i #1 inhibited the proliferation of cystic cholangiocytes and the

growth of cystic cholangioid 3D cultures, in an ERK1/2-dependent manner, exerting an

anti-proliferative effect superior to the isolated or combined effects of the

pharmacologically active elements (UDCA and HDAC6 inhibitory arm) (16). Of note,



using this new family of compounds that have a dual therapeutic effect by combining

UDCA and HDAC6 inhibition constitute a promising therapeutic strategy for PLDs that

will now be evaluated in a clinical setting.

In conclusion, much progress has been made over the past few decades leading to a

better understanding of the pathophysiology of PLD. Novel deregulated processes and

signaling pathways have been identified, which allowed the discovery of novel

pharmacological drugs that were tested at the pre-clinical level. Therefore, improving

ER stress and aberrant proteostasis with 4-PBA, SAMe and/or pevonedistat, inhibiting

autophagy with bafilomycin A1 or hydroxychloroquine, or using UDCA-HDAC6is as a

novel single molecule-based therapy might be revealed as promising and effective

therapeutic strategies for patients with PLD deserving subsequent clinical evaluation.

Therefore, their clinical efficacy, alone or in combination with somatostatin analogues,

should be assessed prospectively in large and well-defined cohorts of patients with

PLD. In addition, novel, interesting emerging fields are evident in the study of PLD

pathogenesis, and the role of metabolism is yet to be unveiled. While metabolomic

reprogramming and mitochondrial dysfunction have already been studied in the

context of polycystic kidney disease (PKD) (19-21), their dysregulation in and impact on

PLD pathogenesis remain unknown, although they may be of great relevance. For

instance, the administration of fenofibrate, a peroxisome proliferator-activated

receptor-α (PPARα) agonist, to mice with PLD boosted fatty acid β-oxidation and

reduced hepatorenal cystogenesis (22). Likewise, the PPARγ (peroxisome proliferator-

activated receptor-γ) agonist telmisartan (23), the anti-diabetic drug metformin (24),

and long-term moderate exercise (25) were shown to diminish liver fibrosis and

hepatic cystogenesis in PCK rats, confirming once more the relevance of lipid

metabolism in PLD pathogenesis. The field of energetic metabolism and mitochondrial

biology has progressed substantially in recent years, and has yielded numerous

opportunities to translate discoveries into clinical practice; therefore, novel effective

therapies may emerge for PLD in the upcoming years.
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Figure 1. Events contributing to hepatic cystogenesis in PLD. Several signaling

pathways and aberrant processes stimulate the hyperproliferative phenotype of cystic

cholangiocytes. For instance, ER stress, aberrant proteostasis and ciliary disassembly as

a result of HDAC6 overexpression stimulate hepatic cystogenesis progression and

development. These heterogeneous processes are therapeutically targeted by

different drugs, which have been already tested in a preclinical level. 4-PBA, 4-

phenylbutyric acid; Ac, acetyl; BafA1, bafilomycin A1; cAMP, cyclic AMP; HCQ,

hydroxychloroquine; HDAC6, histone deacetylase 6; Ca2+, calcium; PC1, polycystin 1;

PC2, polycystin 2; SAMe, S-adenosylmethionine; UDCA, ursodeoxycholic acid; UDCA-

HDAC6i, UDCA-HDAC6 inhibitor.


