Title:
Stage IV perihilar cholangiocarcinoma with loss of expression of MSH2 and MSH6: hereditary cancer syndrome?

Authors:
César Gutiérrez Pérez, Inmaculada Rodríguez Ledesma, Carmen Blanco Abad, Ana María López Muñoz, Irene Chivato Martín-Falquina, Mercedes Durán Domínguez, Enrique Lastra Aras

DOI: 10.17235/reed.2023.9724/2023
Link: PubMed (Epub ahead of print)

Please cite this article as:

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Dear Editor,

We present the case of a 69-year-old male diagnosed with stage IV perihilar cholangiocarcinoma with loss of expression of MSH2 and MSH6 proteins, but somatic wild type MSH2 and MSH6 genes according to the Oncomine Comprehensive Assay (OCA) genomic sequencing panel. Regarding cancer family history, there was a...
maternal aunt with sigmoid colon adenocarcinoma also lacking MSH2 and MSH6 protein expression (Fig. 1).

Discussion

Biliary tract tumors represent less than 1% of all cancer cases. Their molecular complexity makes it imperative to carry out genomic sequencing analysis. Regarding our patient, the following diagnostic hypotheses were considered:

- Lynch syndrome: this autosomal dominant entity with incomplete penetrance is associated with a higher predisposition to develop colorectal and endometrial cancer, as well as tumors of the urinary tract, prostate, pancreas and bile ducts. In our case, Lynch syndrome could originate from germline mutations in DNA repair genes, such as a large deletion in the EPCAM gene or the MSH2 gene, both of which are not detectable using the OCA genomic sequencing panel. In addition, Lynch syndrome could result from atypical germline mutations in DNA repair genes, such as inversions and translocations (2).

- Lynch-like syndrome: Lynch-like syndrome may arise from germline mutations in the POLE or POLD1 genes, as well as biallelic germline mutations in the MUTYH gene, capable of generating secondary biallelic somatic mutations in DNA repair genes, leading to tumors with Lynch syndrome phenotype (1,2). However, the OCA genomic sequencing panel does not include the POLD1 and MUTYH genes (3).

- Sporadic tumors: carcinogenesis could arise from biallelic somatic mutations in DNA repair genes (3), as well as biallelic somatic mutations in the POLE or POLD1 genes. Considering the personal and family cancer history of our patient, this hypothesis seemed unlikely.

Finally, due to the suspicion that the present case was associated with a hereditary cancer syndrome, a germline study of the MSH2 gene was performed using massive sequencing and multiplex ligation-dependent probe amplification (MLPA). The result revealed a c.942+3A>T intron 5 MSH2 gene pathogenic mutation, a Lynch syndrome founder mutation in some populations, underlining the lack of technical detection for
MSH2 intronic variants with tumor-only sequencing (4).

References
Fig. 1. Medical family tree based on the personal and family cancer history of our patient.